A review on adaptive low-rank approximation techniques in the hierarchical tensor format

被引:0
|
作者
机构
[1] Ballani, Jonas
[2] Grasedyck, Lars
[3] Kluge, Melanie
来源
Ballani, Jonas | 1600年 / Springer Verlag卷 / 102期
关键词
Tensors;
D O I
10.1007/978-3-319-08159-5__10
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Nonconvex Nonlinear Transformation of Low-Rank Approximation for Tensor Completion
    Mei, Yifan
    Su, Xinhua
    Lin, Huixiang
    Ge, Huanmin
    APPLIED SCIENCES-BASEL, 2024, 14 (24):
  • [22] TENSOR RANK AND THE ILL-POSEDNESS OF THE BEST LOW-RANK APPROXIMATION PROBLEM
    de Silva, Vin
    Lim, Lek-Heng
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) : 1084 - 1127
  • [23] Low-Rank Tucker Approximation of a Tensor from Streaming Data
    Sun, Yiming
    Guo, Yang
    Luo, Charlene
    Tropp, Joel
    Udell, Madeleine
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (04): : 1123 - 1150
  • [24] A MULTILINEAR NYSTROM ALGORITHM FOR LOW-RANK APPROXIMATION OF TENSORS IN TUCKER FORMAT
    Bucci, Alberto
    Robol, Leonardo
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2024, 45 (04) : 1929 - 1953
  • [25] Adaptive sampling and fast low-rank matrix approximation
    Deshpande, Amit
    Vempala, Santosh
    APPROXIMATION, RANDOMIZATION AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2006, 4110 : 292 - 303
  • [26] Adaptive Local Low-rank Matrix Approximation for Recommendation
    Liu, Huafeng
    Jing, Liping
    Qian, Yuhua
    Yu, Jian
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2019, 37 (04)
  • [27] A PARALLEL RANK-ADAPTIVE INTEGRATOR FOR DYNAMICAL LOW-RANK APPROXIMATION
    Cerutit, Gianluca
    Kusch, Jonas
    Lubich, Christian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (03): : B205 - B228
  • [28] A rank-adaptive robust integrator for dynamical low-rank approximation
    Gianluca Ceruti
    Jonas Kusch
    Christian Lubich
    BIT Numerical Mathematics, 2022, 62 : 1149 - 1174
  • [29] A rank-adaptive robust integrator for dynamical low-rank approximation
    Ceruti, Gianluca
    Kusch, Jonas
    Lubich, Christian
    BIT NUMERICAL MATHEMATICS, 2022, 62 (04) : 1149 - 1174
  • [30] Accelerating Hierarchical Low-Rank Approximation Methods Using GPUs
    Yokota R.
    Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2019, 73 (01): : 58 - 61