Classical versus quantum structure of the scattering probability matrix: Chaotic waveguides

被引:33
|
作者
Luna-Acosta, G.A. [1 ]
Méndez-Bermúdez, J.A. [1 ]
Seba, P. [2 ,3 ]
Pichugin, K.N. [2 ,4 ]
机构
[1] Instituto de Física, Univ. Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
[2] Department of Physics, University Haradec Kralove, Hradec Kralove, Czech Republic
[3] Institute of Physics, Czech Academy of Sciences, Cukrovarnicka 10, Prague, Czech Republic
[4] Kirensky Institute of Physics, 660036 Krasnoyarsk, Russia
关键词
Chaos theory - Matrix algebra - Optical waveguides - Quantum theory - Scattering - Wave equations;
D O I
10.1103/PhysRevE.65.046605
中图分类号
学科分类号
摘要
The purely classical counterpart of the scattering probability matrix (SPM) |Sn,m|2 of the quantum scattering matrix S is defined for two-dimensional quantum waveguides for an arbitrary number of propagating modes M. We compare the quantum and classical structures of |Sn,m| 2 for a waveguide with generic Hamiltonian chaos. It is shown that even for a moderate number of channels, knowledge of the classical structure of the SPM allows us to predict the global structure of the quantum one and, hence, understand important quantum transport properties of waveguides in terms of purely classical dynamics. It is also shown that the SPM, being an intensity measure, can give additional dynamical information to that obtained by the Poincare´ maps. © 2002 The American Physical Society.
引用
收藏
页码:1 / 046605
相关论文
共 50 条
  • [21] On unification of classical and quantum probability
    Khrennikov, A
    JOURNAL OF MODERN OPTICS, 2004, 51 (6-7) : 1109 - 1109
  • [22] Classical Probability and Quantum Outcomes
    Malley, James D.
    AXIOMS, 2014, 3 (02): : 244 - 259
  • [23] QUANTUM PERSISTENCE AND CLASSICAL PROBABILITY
    WOO, CH
    AMERICAN JOURNAL OF PHYSICS, 1985, 53 (08) : 760 - 762
  • [24] Classical wave experiments on chaotic scattering
    Kuhl, U
    Stöckmann, HJ
    Weaver, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (49): : 10433 - 10463
  • [25] RESOLVENT EXPANSIONS AND CONTINUITY OF THE SCATTERING MATRIX AT EMBEDDED THRESHOLDS: THE CASE OF QUANTUM WAVEGUIDES
    Richard, S.
    de Aldecoa, R. Tiedra
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2016, 144 (02): : 251 - 277
  • [26] Chaotic density matrix in the classical limit
    Kowalski, A. M.
    Plastino, A.
    PHYSICS LETTERS A, 2020, 384 (24)
  • [27] ON THE ONSET OF QUANTUM FLUCTUATIONS AND CHAOTIC PROBABILITY
    OTERO, D
    PLASTINO, A
    CHAOS SOLITONS & FRACTALS, 1995, 6 : 417 - 424
  • [28] PARAMETRIC S-MATRIX FLUCTUATIONS IN THE QUANTUM-THEORY OF CHAOTIC SCATTERING
    MACEDO, AMS
    PHYSICAL REVIEW E, 1994, 50 (02): : R659 - R662
  • [29] Trends in quantum chaotic scattering
    Fyodorov, YV
    Kottos, T
    Stöckmann, HJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (49):
  • [30] QUANTUM MANIFESTATIONS OF CHAOTIC SCATTERING
    LAI, YC
    BLUMEL, R
    OTT, E
    GREBOGI, C
    PHYSICAL REVIEW LETTERS, 1992, 68 (24) : 3491 - 3494