Classical versus quantum structure of the scattering probability matrix: Chaotic waveguides

被引:33
|
作者
Luna-Acosta, G.A. [1 ]
Méndez-Bermúdez, J.A. [1 ]
Seba, P. [2 ,3 ]
Pichugin, K.N. [2 ,4 ]
机构
[1] Instituto de Física, Univ. Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
[2] Department of Physics, University Haradec Kralove, Hradec Kralove, Czech Republic
[3] Institute of Physics, Czech Academy of Sciences, Cukrovarnicka 10, Prague, Czech Republic
[4] Kirensky Institute of Physics, 660036 Krasnoyarsk, Russia
关键词
Chaos theory - Matrix algebra - Optical waveguides - Quantum theory - Scattering - Wave equations;
D O I
10.1103/PhysRevE.65.046605
中图分类号
学科分类号
摘要
The purely classical counterpart of the scattering probability matrix (SPM) |Sn,m|2 of the quantum scattering matrix S is defined for two-dimensional quantum waveguides for an arbitrary number of propagating modes M. We compare the quantum and classical structures of |Sn,m| 2 for a waveguide with generic Hamiltonian chaos. It is shown that even for a moderate number of channels, knowledge of the classical structure of the SPM allows us to predict the global structure of the quantum one and, hence, understand important quantum transport properties of waveguides in terms of purely classical dynamics. It is also shown that the SPM, being an intensity measure, can give additional dynamical information to that obtained by the Poincare´ maps. © 2002 The American Physical Society.
引用
收藏
页码:1 / 046605
相关论文
共 50 条
  • [1] Classical versus quantum structure of the scattering probability matrix:: Chaotic waveguides -: art. no. 046605
    Luna-Acosta, GA
    Méndez-Bermúdez, JA
    Seba, P
    Pichugin, KN
    PHYSICAL REVIEW E, 2002, 65 (04)
  • [2] The scattering matrix method for quantum waveguides
    Sheng, WD
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (40) : 8369 - 8380
  • [3] Distribution of Scattering Matrix Elements in Quantum Chaotic Scattering
    Kumar, S.
    Nock, A.
    Sommers, H. -J.
    Guhr, T.
    Dietz, B.
    Miski-Oglu, M.
    Richter, A.
    Schaefer, F.
    PHYSICAL REVIEW LETTERS, 2013, 111 (03)
  • [4] Classical versus quantum probability in sequential measurements
    Anastopoulos, Charis
    FOUNDATIONS OF PHYSICS, 2006, 36 (11) : 1601 - 1661
  • [5] Classical Versus Quantum Probability in Sequential Measurements
    Charis Anastopoulos
    Foundations of Physics, 2006, 36 : 1601 - 1661
  • [6] Classical irregular scattering and fluctuation of quantum transition probability
    Takahashi, S
    Someda, K
    CHEMICAL PHYSICS LETTERS, 2001, 335 (3-4) : 241 - 248
  • [7] The structure of classical extensions of quantum probability theory
    Stulpe, Werner
    Busch, Paul
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (03)
  • [8] Quantum mechanics versus classical probability in biological evolution
    Baake, E
    Baake, M
    Wagner, H
    PHYSICAL REVIEW E, 1998, 57 (01): : 1191 - 1192
  • [9] STOCHASTIC VERSUS SEMICLASSICAL APPROACH TO QUANTUM CHAOTIC SCATTERING
    LEWENKOPF, CH
    WEIDENMULLER, HA
    ANNALS OF PHYSICS, 1991, 212 (01) : 53 - 83
  • [10] Quantum versus classical decay laws in open chaotic systems
    Savin, DV
    Sokolov, VV
    PHYSICAL REVIEW E, 1997, 56 (05): : R4911 - R4913