Research Progress of Multi-Agent Deep Reinforcement Learning

被引:0
|
作者
Ding, Shi-Feiu [1 ,2 ]
Du, Weiu [1 ]
Zhang, Jianu [1 ,2 ]
Guo, Li-Liu [1 ,2 ]
Ding, Ding [3 ]
机构
[1] School of Computer Science and Technology, China University of Mining and Technology, Jiangsu, Xuzhou,221116, China
[2] Mine Digitization Engineering Research Center of the Ministry of Education, China University of Mining and Technology, Jiangsu, Xuzhou,221116, China
[3] College of Intelligence and Computing, Tianjin University, Tianjin,300350, China
来源
关键词
D O I
10.11897/SP.J.1016.2024.01547
中图分类号
学科分类号
摘要
118
引用
下载
收藏
页码:1547 / 1567
相关论文
共 50 条
  • [41] Eavesdropping Game Based on Multi-Agent Deep Reinforcement Learning
    Guo, Delin
    Tang, Lan
    Yang, Lvxi
    Liang, Ying-Chang
    2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
  • [42] Multi-agent deep reinforcement learning strategy for distributed energy
    Xi, Lei
    Sun, Mengmeng
    Zhou, Huan
    Xu, Yanchun
    Wu, Junnan
    Li, Yanying
    MEASUREMENT, 2021, 185
  • [43] Multi-agent Deep Reinforcement Learning for Zero Energy Communities
    Prasad, Amit
    Dusparic, Ivana
    PROCEEDINGS OF 2019 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE), 2019,
  • [44] Toward Conflict Resolution with Deep Multi-Agent Reinforcement Learning
    Isufaj R.
    Sebastia D.A.
    Piera M.A.
    Journal of Air Transportation, 2022, 30 (03): : 71 - 80
  • [45] Multi-Agent Deep Reinforcement Learning for Secure UAV Communications
    Zhang, Yu
    Zhuang, Zirui
    Gao, Feifei
    Wang, Jingyu
    Han, Zhu
    2020 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2020,
  • [46] Decentralized Multi-Agent Pursuit Using Deep Reinforcement Learning
    de Souza, Cristino, Jr.
    Newbury, Rhys
    Cosgun, Akansel
    Castillo, Pedro
    Vidolov, Boris
    Kulic, Dana
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03): : 4552 - 4559
  • [47] Autonomous Separation Assurance with Deep Multi-Agent Reinforcement Learning
    Brittain, Marc W.
    Yang, Xuxi
    Wei, Peng
    JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2021, 18 (12): : 890 - 905
  • [48] Cooperative Multi-Agent Deep Reinforcement Learning with Counterfactual Reward
    Shao, Kun
    Zhu, Yuanheng
    Tang, Zhentao
    Zhao, Dongbin
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [49] Applications of Multi-Agent Deep Reinforcement Learning: Models and Algorithms
    Ibrahim, Abdikarim Mohamed
    Yau, Kok-Lim Alvin
    Chong, Yung-Wey
    Wu, Celimuge
    APPLIED SCIENCES-BASEL, 2021, 11 (22):
  • [50] DEEP REINFORCEMENT LEARNING FOR MULTI-AGENT AUTONOMOUS SATELLITE INSPECTION
    Lei, Henry H.
    Shubert, Matt
    Damron, Nathan
    Lang, Kendra
    Phillips, Sean
    PROCEEDINGS OF THE 44TH ANNUAL AMERICAN ASTRONAUTICAL SOCIETY GUIDANCE, NAVIGATION, AND CONTROL CONFERENCE, AAS 2022, 2024, : 1391 - 1412