On wellposedness of quadratic function minimization problem on intersection of two ellipsoids

被引:0
|
作者
Jaćimović, Milojica [1 ]
Krnić, Izedin [1 ]
机构
[1] Department of Mathematics, University of Montenegro, Podgorica, Montenegro
关键词
Convergence of numerical methods - Functions - Mathematical models - Operations research - Optimization - Problem solving;
D O I
10.2298/YJOR0201049J
中图分类号
学科分类号
摘要
This paper deals with the existence of solutions and the conditions for the strong convergence of minimizing sequences towards the set of solutions of the quadratic function minimization problem on the intersection of two ellipsoids in Hubert space.
引用
收藏
页码:49 / 60
相关论文
共 50 条
  • [21] On a quadratic minimization problem with nonuniform perturbations in the criteria and constraints
    Artem'eva, L. A.
    Dryazhenkov, A. A.
    Potapov, M. M.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2021, 27 (02): : 19 - 34
  • [22] On a Quadratic Minimization Problem with Nonuniform Perturbations in the Criteria and Constraints
    L. A. Artem’eva
    A. A. Dryazhenkov
    M. M. Potapov
    Proceedings of the Steklov Institute of Mathematics, 2021, 315 : S27 - S41
  • [23] Minimization and maximization versions of the quadratic travelling salesman problem
    Aichholzer, Oswin
    Fischer, Anja
    Fischer, Frank
    Meier, J. Fabian
    Pferschy, Ulrich
    Pilz, Alexander
    Stanek, Rostislav
    OPTIMIZATION, 2017, 66 (04) : 521 - 546
  • [24] Quadratic Decomposable Submodular Function Minimization: Theory and Practice
    Li, Pan
    He, Niao
    Milenkovic, Olgica
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [25] MINIMIZATION OF A PIECEWISE QUADRATIC FUNCTION ARISING IN PRODUCTION SCHEDULING
    WILDE, DJ
    ACRIVOS, A
    OPERATIONS RESEARCH, 1960, 8 (05) : 652 - 674
  • [26] Quadratic decomposable submodular function minimization: Theory and practice
    Li, Pan
    He, Niao
    Milenkovic, Olgica
    Journal of Machine Learning Research, 2020, 21
  • [27] SUFFICIENT CONDITIONS FOR EXISTENCE SOLUTION OF LINEAR TWO-POINT BOUNDARY PROBLEM IN MINIMIZATION OF QUADRATIC FUNCTIONAL
    Popescu, Mihai
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2010, 11 (04): : 287 - 293
  • [28] STRONG CONVERGENCE THEOREM FOR QUADRATIC MINIMIZATION PROBLEM WITH COUNTABLE CONSTRAINTS
    Kirihara, Ikuo
    Kurokawa, Yu
    Takahashi, Wataru
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2009, 10 (03) : 383 - 393
  • [29] SOLUTION OF A LINEAR PROBLEM OF MINIMIZATION OF A QUADRATIC FUNCTIONAL IN HILBERT SPACE
    BARANOV, AY
    KHOMENYU.VV
    AUTOMATION AND REMOTE CONTROL, 1965, 26 (04) : 616 - &
  • [30] The householder tridiagonalization strategy for solving a constrained quadratic minimization problem
    Fan, SKS
    ENGINEERING OPTIMIZATION, 2001, 33 (03) : 261 - 277