Enhancement of traffic forecasting through graph neural network-based information fusion techniques

被引:5
|
作者
Ahmed, Shams Forruque [1 ]
Kuldeep, Sweety Angela [2 ]
Rafa, Sabiha Jannat [2 ]
Fazal, Javeria [2 ]
Hoque, Mahfara [2 ]
Liu, Gang [3 ]
Gandomi, Amir H. [4 ,5 ]
机构
[1] North South Univ, Dept Math & Phys, Dhaka 1229, Bangladesh
[2] Asian Univ Women, Sci & Math Program, Chattogram 4000, Bangladesh
[3] Cent South Univ, Sch Energy Sci & Engn, Changsha 410083, Peoples R China
[4] Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
[5] Obuda Univ, Univ Res & Innovat Ctr EKIK, H-1034 Budapest, Hungary
关键词
Keywords; GNNs; Graph neural networks; Traffic forecasting; Deep learning; Graph convolution network; Spatial-temporal graph; TRIP DISTRIBUTION; MODAL SPLIT; PREDICTION;
D O I
10.1016/j.inffus.2024.102466
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To improve forecasting accuracy and capture complex interactions within transportation networks, information fusion approaches are crucial for traffic predictions based on graph neural networks (GNNs). GNNs offer a potentially effective framework for capturing complex patterns and interactions among diverse elements, such as road segments and crossings, by considering both temporal and geographical dependencies. Although GNNbased traffic forecasting has recently been investigated in many studies, there is a need for comprehensive reviews that examine information fusion approaches for GNN-based traffic predictions, including an analysis of their benefits and challenges. This study addresses this knowledge gap and offers future insights into the potential advancements and developing fields of research in GNN-based fusion techniques, as well as their implications in urban planning and smart cities. Existing research demonstrates that the accuracy of traffic forecasting is substantially enhanced by information fusion techniques based on GNNs in comparison to more conventional approaches. By integrating information fusion methods with GNNs, the model is capable of capturing complex temporal and spatial relationships between various locations in a traffic network. Multi-source data integration benefits traffic forecasting models, including social events, weather conditions, real-time traffic sensor data, and historical traffic patterns. In addition, combining GNNs with other artificial intelligence (AI) methods like evolutionary algorithms or reinforcement learning could be an efficient strategy. With the potential to combine the best features of several methods, hybrid models could improve overall performance and flexibility in challenging traffic situations.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Time series: Empirical characterization and artificial neural network-based selection of forecasting techniques
    Villarreal Marroquin, Maria Guadalupe
    Acosta Cervantes, Mary Carmen
    Martinez Flores, Jose Luis
    Cabrera-Rios, Mauricio
    INTELLIGENT DATA ANALYSIS, 2009, 13 (06) : 969 - 982
  • [32] Graph Neural Network-Based Speech Emotion Recognition: A Fusion of Skip Graph Convolutional Networks and Graph Attention Networks
    Wang, Han
    Kim, Deok-Hwan
    ELECTRONICS, 2024, 13 (21)
  • [33] Traffic Speed Prediction Based on Spatial-Temporal Fusion Graph Neural Network
    Liu, Zhongbo
    Li, Mingkui
    Zhao, Jianli
    Sun, Qiuxia
    Zhuo, Futong
    2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer, ICFTIC 2021, 2021, : 77 - 81
  • [34] Graph Neural Network-based Virtual Network Function Management
    Kim, Hee-Gon
    Park, Suhyun
    Lange, Stanislav
    Lee, Doyoung
    Heo, Dongnyeong
    Choi, Heeyoul
    Yoo, Jae-Hyoung
    Hong, James Won-Ki
    APNOMS 2020: 2020 21ST ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS), 2020, : 13 - 18
  • [35] Dynamic temporal position observant graph neural network for traffic forecasting
    Lilapati Waikhom
    Ripon Patgiri
    Laiphrakpam Dolendro Singh
    Applied Intelligence, 2023, 53 : 23166 - 23178
  • [36] Dynamic temporal position observant graph neural network for traffic forecasting
    Waikhom, Lilapati
    Patgiri, Ripon
    Singh, Laiphrakpam Dolendro
    APPLIED INTELLIGENCE, 2023, 53 (20) : 23166 - 23178
  • [37] Adaptive Spatio-temporal Graph Neural Network for traffic forecasting
    Ta, Xuxiang
    Liu, Zihan
    Hu, Xiao
    Yu, Le
    Sun, Leilei
    Du, Bowen
    KNOWLEDGE-BASED SYSTEMS, 2022, 242
  • [38] Multiadaptive Spatiotemporal Flow Graph Neural Network for Traffic Speed Forecasting
    Xu, Yaobin
    Liu, Weitang
    Mao, Tingyun
    Jiang, Zhongyi
    Chen, Lili
    Zhou, Mingwei
    TRANSPORTATION RESEARCH RECORD, 2023, 2677 (03) : 683 - 695
  • [39] Hybrid spatial-temporal graph neural network for traffic forecasting
    Wang, Peng
    Feng, Longxi
    Zhu, Yijie
    Wu, Haopeng
    INFORMATION FUSION, 2025, 118
  • [40] Integrated Spatio-Temporal Graph Neural Network for Traffic Forecasting
    Singh, Vandana
    Sahana, Sudip Kumar
    Bhattacharjee, Vandana
    APPLIED SCIENCES-BASEL, 2024, 14 (24):