Clustering single-cell rna-sequencing data based on matching clusters structures

被引:0
|
作者
Wang, Yizhang [1 ]
Zhou, You [1 ]
Pang, Wie [2 ]
Liang, Yanchun [3 ]
Wang, Shu [4 ]
机构
[1] College of Computer Science and Technology, Jilin University, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, 2699 Qianjin Street, Changchun,130012, China
[2] The School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, United Kingdom
[3] College of Computer Science and Technology, Jilin University, College of Computer Science, Zhuhai College of Jilin University, 2699 Qianjin Street, Changchun,130012, China
[4] College of Computer Science, Zhuhai College of Jilin University, Zhuhai,519041, China
来源
Tehnicki Vjesnik | 2020年 / 27卷 / 01期
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:89 / 95
相关论文
共 50 条
  • [41] Evaluation of Genotype Based Clustering Method of Single-Cell RNA-Sequencing Data from Human Kidney Allograft Biopsies.
    Thareja, G.
    Belkadi, A.
    Rahim, S.
    Yang, H.
    Mueller, F. B.
    Suhre, K.
    Suthanthiran, M.
    Muthukumar, T.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2022, 22 : 915 - 915
  • [42] Quantitative assessment of single-cell RNA-sequencing methods
    Angela R Wu
    Norma F Neff
    Tomer Kalisky
    Piero Dalerba
    Barbara Treutlein
    Michael E Rothenberg
    Francis M Mburu
    Gary L Mantalas
    Sopheak Sim
    Michael F Clarke
    Stephen R Quake
    Nature Methods, 2014, 11 : 41 - 46
  • [43] Power analysis of single-cell RNA-sequencing experiments
    Svensson, Valentine
    Natarajan, Kedar Nath
    Ly, Lam-Ha
    Miragaia, Ricardo J.
    Labalette, Charlotte
    Macaulay, Iain C.
    Cvejic, Ana
    Teichmann, Sarah A.
    NATURE METHODS, 2017, 14 (04) : 381 - +
  • [44] The Poisson distribution model fits UMI-based single-cell RNA-sequencing data
    Yue Pan
    Justin T. Landis
    Razia Moorad
    Di Wu
    J. S. Marron
    Dirk P. Dittmer
    BMC Bioinformatics, 24
  • [45] Power analysis of single-cell RNA-sequencing experiments
    Valentine Svensson
    Kedar Nath Natarajan
    Lam-Ha Ly
    Ricardo J Miragaia
    Charlotte Labalette
    Iain C Macaulay
    Ana Cvejic
    Sarah A Teichmann
    Nature Methods, 2017, 14 : 381 - 387
  • [46] Deep learning-based advances and applications for single-cell RNA-sequencing data analysis
    Bao, Siqi
    Li, Ke
    Yan, Congcong
    Zhang, Zicheng
    Qu, Jia
    Zhou, Meng
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [47] The Poisson distribution model fits UMI-based single-cell RNA-sequencing data
    Pan, Yue
    Landis, Justin T.
    Moorad, Razia
    Wu, Di
    Marron, J. S.
    Dittmer, Dirk P.
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [48] Recovery of missing single-cell RNA-sequencing data with optimized transcriptomic references
    Pool, Allan-Hermann
    Poldsam, Helen
    Chen, Sisi
    Thomson, Matt
    Oka, Yuki
    NATURE METHODS, 2023, 20 (10) : 1506 - +
  • [49] scAnnotatR: framework to accurately classify cell types in single-cell RNA-sequencing data
    Vy Nguyen
    Johannes Griss
    BMC Bioinformatics, 23
  • [50] Identifying and removing the cellcycle effect from single-cell RNA-Sequencing data
    Barron, Martin
    Li, Jun
    SCIENTIFIC REPORTS, 2016, 6