Classification of hyperspectral remote-sensing images based on sparse manifold learning

被引:0
|
作者
Huang, Hong [1 ,2 ]
机构
[1] Chongqing University, Key Laboratory on Opto-electronic Technique and Systems, Ministry of Education, 400044 Chongqing, China
[2] Technical Center of Chongqing Chuanyi Automation Co., Ltd., Chongqing 401121, China
关键词
Number:; 2012M511906; Acronym:; -; Sponsor: China Postdoctoral Science Foundation; 1061120131204; Sponsor: Fundamental Research Funds for the Central Universities; Number: cstc2013jcyj A40005; Sponsor: Chongqing Basic and Frontier Research Project; 41371338; NSFC; Sponsor: National Natural Science Foundation of China; XM2012001; Sponsor: Chongqing Postdoctoral Science Foundation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Classification of hyperspectral remote-sensing images based on sparse manifold learning
    Huang, Hong
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2013, 7
  • [2] Subspace Feature Analysis of Local Manifold Learning for Hyperspectral Remote Sensing Images Classification
    Ding, Ling
    Tang, Ping
    Li, Hongyi
    [J]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (04): : 1987 - 1995
  • [3] Support vector machines for classification of hyperspectral remote-sensing images
    Melgani, F
    Bruzzone, L
    [J]. IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 506 - 508
  • [4] Sparse discriminant learning with l1-graph for hyperspectral remote-sensing image classification
    Huang, Hong
    Luo, Fulin
    Ma, Zezhong
    Liu, Zhihua
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (05) : 1307 - 1328
  • [5] Stochastic learning algorithms for the classification of remote-sensing images
    Diotalevi, F.
    Valle, M.
    [J]. Alta Frequenza Rivista Di Elettronica, 2001, 13 (05): : 60 - 64
  • [6] Classification of hyperspectral remote-sensing images using discriminative linear projections
    Weizman, Lior
    Goldberger, Jacob
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (21) : 5605 - 5617
  • [7] Unsupervised Multi-manifold Classification of Hyperspectral Remote Sensing Images with Contractive Autoencoder
    Hassanzadeh, Aidin
    Kaarna, Arto
    Kauranne, Tuomo
    [J]. IMAGE ANALYSIS, SCIA 2017, PT II, 2017, 10270 : 169 - 180
  • [8] A deep learning based hybrid framework for semisupervised classification of hyperspectral remote sensing images
    Monika Sharma
    Mantosh Biswas
    [J]. Multimedia Tools and Applications, 2024, 83 : 55447 - 55470
  • [9] A deep learning based hybrid framework for semisupervised classification of hyperspectral remote sensing images
    Sharma, Monika
    Biswas, Mantosh
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) : 55447 - 55470
  • [10] An incremental-learning neural network for the classification of remote-sensing images
    Bruzzone, L
    Prieto, DF
    [J]. PATTERN RECOGNITION LETTERS, 1999, 20 (11-13) : 1241 - 1248