Existence and weak-strong uniqueness for Maxwell-Stefan-Cahn-Hilliard systems

被引:2
|
作者
Huo, Xiaokai [1 ]
Juengel, Ansgar [1 ]
Tzavaras, Athanasios E. [2 ]
机构
[1] Tech Univ Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] King Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn Div, Thuwal 239556900, Saudi Arabia
基金
欧洲研究理事会; 奥地利科学基金会;
关键词
Cross-diffusion systems; global existence; weak-strong uniqueness; relative entropy; relative free energy; parabolic fourth-order equations; Maxwell-Stefan equations; Cahn-Hilliard equations; CROSS-DIFFUSION SYSTEMS; EQUATION; FLOWS;
D O I
10.4171/AIHPC/89
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Maxwell-Stefan system for fluid mixtures with driving forces depending on Cahn- Hilliard-type chemical potentials is analyzed. The corresponding parabolic cross-diffusion equations contain fourth-order derivatives and are considered in a bounded domain with no-flux boundary conditions. The nonconvex part of the energy is assumed to have a bounded Hessian. The main difficulty of the analysis is the degeneracy of the diffusion matrix, which is overcome by proving the positive-definiteness of the matrix on a subspace and using the Bott-Duffin matrix inverse. The global existence of weak solutions and a weak-strong uniqueness property are shown by a careful combination of (relative) energy and entropy estimates, yielding H2.52/ bounds for the densities, which cannot be obtained from the energy or entropy inequalities alone.
引用
收藏
页码:797 / 852
页数:56
相关论文
共 50 条
  • [1] WEAK-STRONG UNIQUENESS FOR MAXWELL-STEFAN SYSTEMS
    Huo, Xiaokai
    Jungel, Ansgar
    Tzavaras, Athanasios E.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (03) : 3215 - 3252
  • [2] Global existence of weak solutions and weak-strong uniqueness for nonisothermal Maxwell-Stefan systems
    Georgiadis, Stefanos
    Juengel, Ansgar
    NONLINEARITY, 2024, 37 (07)
  • [3] Existence and weak-strong uniqueness of solutions to the Cahn-Hilliard-Navier-Stokes-Darcy system in superposed free flow and porous media
    Han, Daozhi
    He, Xiaoming
    Wang, Quan
    Wu, Yanyun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 211
  • [4] Weak entropy solutions to a model in induction hardening, existence and weak-strong uniqueness
    Homberg, Dietmar
    Lasarzik, Robert
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (09): : 1867 - 1918
  • [5] Weak-Strong Uniqueness for Navier-Stokes/Allen-Cahn System
    Radim Hošek
    Václav Mácha
    Czechoslovak Mathematical Journal, 2019, 69 : 837 - 851
  • [6] Weak-Strong Uniqueness for Navier-Stokes/Allen-Cahn System
    Hosek, Radim
    Macha, Vaclav
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (03) : 837 - 851
  • [7] Weak-strong uniqueness for energy-reaction-diffusion systems
    Hopf, Katharina
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (05): : 1015 - 1069
  • [8] EXISTENCE, REGULARITY AND WEAK-STRONG UNIQUENESS FOR THREE-DIMENSIONAL PETERLIN VISCOELASTIC MODEL
    Brunk, Aaron
    Lu, Yong
    Lukacova-Medvidova, Maria
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2022, 20 (01) : 201 - 230
  • [9] Weak-Strong Uniqueness for Measure-Valued Solutions
    Yann Brenier
    Camillo De Lellis
    László Székelyhidi
    Communications in Mathematical Physics, 2011, 305
  • [10] The role of Riesz potentials in the weak-strong uniqueness for Euler-Poisson systems
    Alves, Nuno J.
    APPLICABLE ANALYSIS, 2024, 103 (06) : 1064 - 1079