Non-Destructive Detection of Moldy Core in Apple Fruit Based on Deep Belief Network

被引:1
|
作者
机构
[1] [1,Zhou, Zhaoyong
[2] He, Dongjian
[3] Zhang, Haihui
[4] Lei, Yu
[5] Su, Dong
[6] Chen, Ketao
来源
He, Dongjian (hdj168@nwsuaf.edu.cn) | 1600年 / Chinese Chamber of Commerce卷 / 38期
关键词
Back-propagation artificial neural network - Deep belief network (DBN) - Moldy core in apples - Multi-class classification - Near-infrared transmittance spectroscopies - Restricted boltzmann machine - Successive projections algorithms (SPA) - Transmittance spectroscopies;
D O I
10.7506/spkx1002-6630-201714046
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] A portable non-destructive quality meter for understanding fruit soluble solids in apple canopies
    Bessho, Hideo
    Kudo, Kazunori
    Omori, Junichiro
    Inomata, Yuji
    Wada, Masato
    Masuda, Tetsuo
    Nakamoto, Yoichi
    Fujisawa, Hiroyuki
    Suzuki, Yoshiharu
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL SYMPOSIUM ON CANOPY, ROOTSTOCKS AND ENVIRONMENTAL PHYSIOLOGY IN ORCHARD SYSTEMS, 2007, (732): : 593 - +
  • [22] Non-destructive determination of soluble solids in apple fruit by near infrared spectroscopy (NIRS)
    Ventura, M
    de Jager, A
    de Putter, H
    Roelofs, FPMM
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 1998, 14 (01) : 21 - 27
  • [23] Selection for fruit core rot of Japanese pear by a non-destructive inspection machine
    Inoue, K
    Nasu, H
    Kasuyama, S
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON ASIAN PEARS COMMEMORATING THE 100TH ANNIVERSARY OF NIJISSEIKI PEAR, VOLS I AND II, 2002, (587): : 691 - 693
  • [24] Reflectance based non-destructive assessment of tomato fruit firmness
    Kumar, Rajeev
    Paul, Vijay
    Pandey, Rakesh
    Sahoo, R. N.
    Gupta, V. K.
    Asrey, Ram
    Jha, S. K.
    PLANT PHYSIOLOGY REPORTS, 2022, 27 (03) : 374 - 382
  • [25] Reflectance based non-destructive assessment of tomato fruit firmness
    Rajeev Kumar
    Vijay Paul
    Rakesh Pandey
    R. N. Sahoo
    V. K. Gupta
    Ram Asrey
    S. K. Jha
    Plant Physiology Reports, 2022, 27 : 374 - 382
  • [26] Recent Progress in Technologies for Non-destructive Detection of Fruit Diseases and Pests
    Qiao, Shicheng
    Tian, Youwen
    He, Kuan
    Yao, Ping
    Gu, Wenjun
    Wang, Jianping
    Shipin Kexue/Food Science, 2019, 40 (11): : 227 - 234
  • [27] DESTRUCTIVE AND NON-DESTRUCTIVE ANALYSES ON THE CHROMATIN NETWORK
    WATANABE, M
    KINJO, Y
    JAPANESE JOURNAL OF GENETICS, 1981, 56 (06): : 650 - 650
  • [28] NON-DESTRUCTIVE DETECTION OF WATERCORE IN APPLE WITH NUCLEAR MAGNETIC-RESONANCE IMAGING
    WANG, SY
    WANG, PC
    FAUST, M
    SCIENTIA HORTICULTURAE, 1988, 35 (3-4) : 227 - 234
  • [29] Research on the Apple Non-destructive Selection Technology Based on the Fuzzy Arithmetic
    Wang, Y. L.
    Ji, S. M.
    Zhang, L.
    Chen, Y.
    Zhang, Y.
    ULTRA-PRECISION MACHINING TECHNOLOGIES, 2009, 69-70 : 705 - 709
  • [30] SMOTE-based method for balanced spectral nondestructive detection of moldy apple core
    Zhang, Zhongxiong
    Liu, Haoling
    Chen, Danyan
    Zhang, Junhua
    Li, Hao
    Shen, Maosheng
    Pu, Yuge
    Zhang, Zuojing
    Zhao, Juan
    Hu, Jin
    FOOD CONTROL, 2022, 141