Supervised Learning-Based Prediction of Lightning Probability in the Warm Season

被引:0
|
作者
Shin, Kyuhee [1 ]
Kim, Kwonil [2 ]
Lee, Gyuwon [1 ]
机构
[1] Kyungpook Natl Univ, Ctr Atmospher REmote Sensing CARE, Dept Atmospher Sci, BK21 Weather Extremes Educ & Res Team, Daegu 41566, South Korea
[2] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA
基金
新加坡国家研究基金会;
关键词
lightning; machine learning; random forest; probability of lightning occurrence; prediction;
D O I
10.3390/rs16193621
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The accurate prediction of lightning is crucial for forecasters to respond effectively to its related hazards. The rapid development and confined spatial extent of convective storms, in which lightning frequently occurs, pose considerable challenges for accurately predicting their locations using numerical weather prediction (NWP) models. Lightning occurrence is often prognosed using thermodynamic parameters, convective available potential energy (CAPE), the severe weather threat index (SWEAT), the lifted index (LI), etc. A high-resolution NWP model provides a prediction of these thermodynamic parameters at high spatiotemporal resolution with high accuracy for a few hours. However, a complicated algorithm is required to handle all the useful high-resolution variables from the NWP model. The recently emerging machine learning technique can solve this issue by properly handling these "big data" without any model distributional assumption. In this study, we developed a random forest algorithm for nowcasting and very short-range forecasting (useful for similar to 6 h), named LightningRF. LightningRF was trained by using lightning occurrence as a response variable and characteristic parameters from the NWP as predictors. It was also applied to analysis and forecast fields, showing a high probability of lightning within the observed lightning regions. This highlights the potential of helping forecasters improve their lightning forecasting skills using real-time probabilistic forecasts from a trained model.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A supervised contrastive learning-based model for image emotion classification
    Sun, Jianshan
    Zhang, Qing
    Yuan, Kun
    Jiang, Yuanchun
    Chen, Xinran
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2024, 27 (03):
  • [32] Soft Semi-Supervised Deep Learning-Based Clustering
    Alzuhair, Mona Suliman
    Ben Ismail, Mohamed Maher
    Bchir, Ouiem
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [33] A Learning-Based Framework for Supervised and Unsupervised Image Segmentation Evaluation
    Lin, Jian
    Peng, Bo
    Li, Tianrui
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2014, 14 (03)
  • [34] Weakly Supervised Deep Learning-based Intracranial Hemorrhage Localization
    Nemcek, Jakub
    Vicar, Tomas
    Jakubicek, Roman
    PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES (BIOIMAGING), VOL 2, 2021, : 111 - 116
  • [35] DEEP METRIC LEARNING-BASED SEMI-SUPERVISED REGRESSION WITH ALTERNATE LEARNING
    Zell, Adina
    Sumbul, Gencer
    Demir, Begum
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2411 - 2415
  • [36] Lightning Search Algorithm with Deep Transfer Learning-Based Vehicle Classification
    Alnfiai, Mrim M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (03): : 6505 - 6521
  • [37] Supervised learning-based multi-site lean blowout prediction for dry low emission gas turbine
    Bahashwan, Abdulrahman Abdullah
    Ibrahim, Rosdiazli
    Omar, Madiah
    Amosa, Temitope Ibrahim
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 244
  • [38] Learning-based Query Performance Modeling and Prediction
    Akdere, Mert
    Cetintemel, Ugur
    Riondato, Matteo
    Upfal, Eli
    Zdonik, Stanley B.
    2012 IEEE 28TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2012, : 390 - 401
  • [39] Deep learning-based dose prediction for INTRABEAM
    Abushawish, Mojahed
    Galapon, Arthur V.
    Herraiz, Joaquin L.
    Udias, Jose M.
    Ibanez, Paula
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S4472 - S4474
  • [40] Learning-Based SPARQL Query Performance Prediction
    Zhang, Wei Emma
    Sheng, Quan Z.
    Taylor, Kerry
    Qin, Yongrui
    Yao, Lina
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2016, PT I, 2016, 10041 : 313 - 327