Quintication method to obtain approximate analytical solutions of non-linear oscillators

被引:26
|
作者
Escuela Nacional de Posgrado en Ciencias, Ingenieria y Tecnologias, Tecnologico de Monterrey, Campus Monterrey, E. Garza Sada 2501, Sur, C.P. 64849 Monterrey, N.L., Mexico [1 ]
机构
来源
Appl. Math. Comput. | / 849-855期
关键词
Oscillators (mechanical) - Nonlinear equations - Ordinary differential equations - Polynomials;
D O I
10.1016/j.amc.2014.05.085
中图分类号
学科分类号
摘要
In this paper we propose a new approach to replace nonlinear ordinary differential equations by approximate cubic-quintic Duffing oscillators in which its coefficients depend on the initial amplitude of oscillation. It is shown that this procedure leads to angular frequency values with relative errors that are lower than those found by previously developed approximate solutions. © 2014 Elsevier Inc. All rights reserved.
引用
收藏
相关论文
共 50 条
  • [31] APPROXIMATE ANALYTICAL SOLUTIONS OF A CLASS OF NON-LINEAR FRACTIONAL BOUNDARY VALUE PROBLEMS WITH CONFORMABLE DERIVATIVE
    Alkan, Sertan
    [J]. THERMAL SCIENCE, 2021, 25 : S121 - S130
  • [32] Application of the Differential Transform Method for Solving Periodic Solutions of Strongly Non-linear Oscillators
    Chu, Hsin-Ping
    Lo, Cheng-Ying
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2011, 77 (3-4): : 161 - 172
  • [33] A SHORT REVIEW ON APPROXIMATE ANALYTICAL METHODS FOR NON-LINEAR PROBLEMS
    Tian, Yi
    Feng, Guang-Qing
    [J]. THERMAL SCIENCE, 2022, 26 (03): : 2607 - 2618
  • [34] Analytical approximate solutions for asymmetric conservative oscillators
    Liu, Weijia
    Wu, Baisheng
    Chen, Xin
    Zhu, Weidong
    [J]. ARCHIVE OF APPLIED MECHANICS, 2019, 89 (11) : 2265 - 2279
  • [35] Analytical approximate solutions for asymmetric conservative oscillators
    Weijia Liu
    Baisheng Wu
    Xin Chen
    Weidong Zhu
    [J]. Archive of Applied Mechanics, 2019, 89 : 2265 - 2279
  • [36] A SIMPLE TEST FOR ACCURACY OF APPROXIMATE SOLUTIONS TO NON-LINEAR (OR LINEAR) SYSTEMS
    MOORE, RE
    KIOUSTELIDIS, JB
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (04) : 521 - 529
  • [37] Non-linear argumental oscillators: Stability criterion and approximate implicit analytic solution
    Cintra, Daniel
    Argoul, Pierre
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2017, 94 : 109 - 124
  • [38] Quadratic non-linear oscillators
    Mickens, RE
    [J]. JOURNAL OF SOUND AND VIBRATION, 2004, 270 (1-2) : 427 - 432
  • [39] APPROXIMATE METHOD OF SOLUTION FOR NON-LINEAR FRACTIONAL PROGRAMMING
    GUPTA, RK
    SWARUP, K
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1969, 49 (12): : 753 - &
  • [40] PERIODS OF NON-LINEAR OSCILLATORS
    CHEN, TW
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (01): : 54 - 54