A theoretical case study of the generalization of machine-learned potentials

被引:0
|
作者
Wang, Yangshuai [1 ]
Patel, Shashwat [2 ]
Ortner, Christoph [1 ]
机构
[1] Department of Mathematics, University of British Columbia, Vancouver,V6T1Z2, Canada
[2] Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Tamil Nadu, Chennai, India
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [11] Machine-learned interatomic potentials: Recent developments and prospective applications
    Volker Eyert
    Jonathan Wormald
    William A. Curtin
    Erich Wimmer
    [J]. Journal of Materials Research, 2023, 38 : 5079 - 5094
  • [12] Machine-learned potentials for next-generation matter simulations
    Friederich, Pascal
    Hase, Florian
    Proppe, Jonny
    Aspuru-Guzik, Alan
    [J]. NATURE MATERIALS, 2021, 20 (06) : 750 - 761
  • [13] Machine-learned interatomic potentials for alloys and alloy phase diagrams
    Conrad W. Rosenbrock
    Konstantin Gubaev
    Alexander V. Shapeev
    Livia B. Pártay
    Noam Bernstein
    Gábor Csányi
    Gus L. W. Hart
    [J]. npj Computational Materials, 7
  • [14] A Status Report on "Gold Standard" Machine-Learned Potentials for Water
    Yu, Qi
    Qu, Chen
    Houston, Paul L.
    Nandi, Apurba
    Pandey, Priyanka
    Conte, Riccardo
    Bowman, Joel M.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (36): : 8077 - 8087
  • [15] Phase Transitions in Inorganic Halide Perovskites from Machine-Learned Potentials
    Fransson, Erik
    Wiktor, Julia
    Erhart, Paul
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (28): : 13773 - 13781
  • [16] Accurate nuclear quantum statistics on machine-learned classical effective potentials
    Zaporozhets, Iryna
    Musil, Felix
    Kapil, Venkat
    Clementi, Cecilia
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (13):
  • [17] Evaluation of Rate Coefficients in the Gas Phase Using Machine-Learned Potentials
    Marti, Carles
    Devereux, Christian
    Najm, Habib N.
    Zador, Judit
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 128 (10): : 1958 - 1971
  • [18] The machine-learned radii of atoms
    Nikolaienko, Tymofii Yu.
    Bulavin, Leonid A.
    [J]. COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2021, 1204
  • [19] Performance of two complementary machine-learned potentials in modelling chemically complex systems
    Gubaev, Konstantin
    Zaverkin, Viktor
    Srinivasan, Prashanth
    Duff, Andrew Ian
    Kaestner, Johannes
    Grabowski, Blazej
    [J]. NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [20] GENERALIZATION OF MACHINE-LEARNED TURBULENT HEAT FLUX MODELS APPLIED TO FILM COOLING FLOWS
    Milani, Pedro M.
    Ling, Julia
    Eaton, John K.
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2019, VOL 5A, 2019,