A theoretical case study of the generalization of machine-learned potentials

被引:0
|
作者
Wang, Yangshuai [1 ]
Patel, Shashwat [2 ]
Ortner, Christoph [1 ]
机构
[1] Department of Mathematics, University of British Columbia, Vancouver,V6T1Z2, Canada
[2] Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Tamil Nadu, Chennai, India
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] A theoretical case study of the generalization of machine-learned potentials
    Wang, Yangshuai
    Patel, Shashwat
    Ortner, Christoph
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 422
  • [2] A FRAMEWORK FOR A GENERALIZATION ANALYSIS OF MACHINE-LEARNED INTERATOMIC POTENTIALS
    Ortner, Christoph
    Wang, Yangshuai
    [J]. MULTISCALE MODELING & SIMULATION, 2023, 21 (03): : 1053 - 1080
  • [3] Machine-learned potentials for eucryptite: A systematic comparison
    Hill, Jorg-Rudiger
    Mannstadt, Wolfgang
    [J]. JOURNAL OF MATERIALS RESEARCH, 2023, 38 (24) : 5188 - 5197
  • [4] Machine-learned potentials for eucryptite: A systematic comparison
    Jörg-Rüdiger Hill
    Wolfgang Mannstadt
    [J]. Journal of Materials Research, 2023, 38 : 5188 - 5197
  • [5] How to validate machine-learned interatomic potentials
    Morrow, Joe D.
    Gardner, John L. A.
    Deringer, Volker L.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (12):
  • [6] Simple machine-learned interatomic potentials for complex alloys
    Byggmastar, J.
    Nordlund, K.
    Djurabekova, F.
    [J]. PHYSICAL REVIEW MATERIALS, 2022, 6 (08)
  • [7] Analyzing Machine-Learned Representations: A Natural Language Case Study
    Dasgupta, Ishita
    Guo, Demi
    Gershman, Samuel J.
    Goodman, Noah D.
    [J]. COGNITIVE SCIENCE, 2020, 44 (12)
  • [8] Machine-learned interatomic potentials: Recent developments and prospective applications
    Eyert, Volker
    Wormald, Jonathan
    Curtin, William A.
    Wimmer, Erich
    [J]. JOURNAL OF MATERIALS RESEARCH, 2023, 38 (24) : 5079 - 5094
  • [9] Machine-learned interatomic potentials for alloys and alloy phase diagrams
    Rosenbrock, Conrad W.
    Gubaev, Konstantin
    Shapeev, Alexander V.
    Partay, Livia B.
    Bernstein, Noam
    Csanyi, Gabor
    Hart, Gus L. W.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [10] Machine-learned potentials for next-generation matter simulations
    Pascal Friederich
    Florian Häse
    Jonny Proppe
    Alán Aspuru-Guzik
    [J]. Nature Materials, 2021, 20 : 750 - 761