An adaptive finite element method for the infinity Laplacian

被引:0
|
作者
Lakkis, Omar [1 ]
Pryer, Tristan [2 ]
机构
[1] Department of Mathematics, University of Sussex, Brighton,GB-BN1 9QH, United Kingdom
[2] Department of Mathematics and Statistics, University of Reading, Whiteknights, PO Box 220, Reading,GB-RG6 6AX, United Kingdom
关键词
14;
D O I
10.1007/978-3-319-10705-9__28
中图分类号
学科分类号
摘要
引用
收藏
页码:283 / 291
相关论文
共 50 条
  • [41] Adaptive finite element method for sheet forming processes
    Zhang, Hua
    Zhang, Xiangwei
    Jisuan Jiegou Lixue Jiqi Yingyong/Journal of Computational Structural Mechanics and Applications, 2000, 17 (02): : 170 - 175
  • [42] An optimally convergent adaptive mixed finite element method
    Becker, Roland
    Mao, Shipeng
    NUMERISCHE MATHEMATIK, 2008, 111 (01) : 35 - 54
  • [43] An adaptive finite element method for problems in perfect plasticity
    Rannacher, R
    Suttmeier, FT
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1999, 79 : S143 - S146
  • [44] NUMERICAL SIMULATIONS OF ARTERIES WITH AN ADAPTIVE FINITE ELEMENT METHOD
    Fuksa, A. Karolina
    Rachowicz, Waldemar
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS, 2014, 52 (04) : 917 - 925
  • [45] Adaptive finite element method for conjugate heat transfer
    Pelletier, D
    Ignat, L
    Ilinca, F
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 1997, 32 (03) : 267 - 287
  • [46] ADAPTIVE FINITE-ELEMENT METHOD FOR MIXED CONVECTION
    PELLETIER, D
    ILINCA, F
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 1995, 9 (04) : 708 - 714
  • [47] hp-adaptive extended finite element method
    Byfut, A.
    Schroeder, A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 89 (11) : 1392 - 1418
  • [48] An optimally convergent adaptive mixed finite element method
    Roland Becker
    Shipeng Mao
    Numerische Mathematik, 2008, 111 : 35 - 54
  • [49] Convergence analysis of an adaptive nonconforming finite element method
    Carsten Carstensen
    Ronald H.W. Hoppe
    Numerische Mathematik, 2006, 103 : 251 - 266
  • [50] A CONVERGENT ADAPTIVE FINITE ELEMENT METHOD WITH OPTIMAL COMPLEXITY
    Becker, Roland
    Mao, Shipeng
    Shi, Zhong-Ci
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 30 : 291 - 304