Lithium-ion battery SOH estimation method based on multi-feature and CNN-KAN

被引:0
|
作者
Zhang, Zhao [1 ]
Liu, Xin [2 ]
Zhang, Runrun [3 ]
Liu, Xu Ming [4 ]
Chen, Shi [1 ]
Sun, Zhexuan [2 ]
Jiang, Heng [5 ]
机构
[1] College of Intelligent Science and Control Engineering, Jinling Institute of Technology, Jiangsu, Nanjing, China
[2] College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
[3] Institute of Advanced Materials, Nanjing Tech University, Nanjing, China
[4] College of Mechanical and Electrical Engineering, Jinling Institute of Technology, Jiangsu, Nanjing, China
[5] School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing, China
关键词
Charging time - Lithium-ion batteries - Mean square error - State of charge;
D O I
10.3389/fenrg.2024.1494473
中图分类号
学科分类号
摘要
The promotion of electric vehicles brings notable environmental and economic advantages. Precisely estimating the state of health (SOH) of lithium-ion batteries is crucial for maintaining their efficiency and safety. This study introduces an SOH estimation approach for lithium-ion batteries that integrates multi-feature analysis with a convolutional neural network and kolmogorov-arnold network (CNN-KAN). Initially, we measure the charging time, current, and temperature during the constant voltage phase. These include charging duration, the integral of current over time, the chi-square value of current, and the integral of temperature over time, which are combined to create a comprehensive multi-feature set. The CNN’s robust feature extraction is employed to identify crucial features from raw data, while KAN adeptly models the complex nonlinear interactions between these features and SOH, enabling accurate SOH estimation for lithium batteries. Experiments were carried out at four different charging current rates. The findings indicate that despite significant nonlinear declines in the SOH of lithium batteries, this method consistently provides accurate SOH estimations. The root mean square error (RMSE) is below 1%, with an average coefficient of determination (R2) exceeding 98%. Compared to traditional methods, the proposed method demonstrates significant advantages in handling the nonlinear degradation trends in battery life prediction, enhancing the model’s generalization ability as well as its reliability in practical applications. It holds significant promise for future research in SOH estimation of lithium batteries. Copyright © 2024 Zhang, Liu, Zhang, Liu, Chen, Sun and Jiang.
引用
收藏
相关论文
共 50 条
  • [31] State of health estimation of lithium-ion batteries based on multi-feature extraction and temporal convolutional network
    Liu, Suzhen
    Chen, Ziqian
    Yuan, Luhang
    Xu, Zhicheng
    Jin, Liang
    Zhang, Chuang
    Journal of Energy Storage, 2024, 75
  • [32] SOC and SOH Joint Estimation of Lithium-Ion Battery Based on Improved Particle Filter Algorithm
    Wu, Tiezhou
    Liu, Sizhe
    Wang, Zhikun
    Huang, Yiheng
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (01) : 307 - 317
  • [33] Study on Lithium-ion Battery SOH Estimation Based on Incremental Capacity Analysis and Deep Learning
    Park M.-S.
    Kim J.-S.
    Kim B.-W.
    Transactions of the Korean Institute of Electrical Engineers, 2024, 73 (02): : 349 - 357
  • [34] SOH Estimation of Lithium-Ion Battery Pack Based on Integrated State Information from Cells
    Wang, Xiaohong
    Fan, Wenhui
    Li, Shixiang
    Li, Xinjun
    Wang, Lizhi
    APPLIED SCIENCES-BASEL, 2020, 10 (19):
  • [35] A SOH Estimation Study on Lithium-Ion Battery based on Incremental Capacity and Differential Voltage Analysis
    Park, Seong Yun
    Lee, Pyeong Yeon
    Yoo, Ki Soo
    Kim, Jong Hoon
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2021, 45 (03) : 259 - 266
  • [36] State of health estimation of lithium-ion battery based on CNN–WNN–WLSTM
    Quanzheng Yao
    Xianhua Song
    Wei Xie
    Complex & Intelligent Systems, 2024, 10 : 2919 - 2936
  • [37] Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network
    Guo, Yu
    Yang, Dongfang
    Zhang, Yang
    Wang, Licheng
    Wang, Kai
    PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, 2022, 7 (01)
  • [38] Robust Fuzzy Entropy-Based SOH Estimation for Different Lithium-Ion Battery Chemistries
    Sui, Xin
    He, Shan
    Gismero, Alejandro
    Teodorescu, Remus
    Stroe, Daniel-Ioan
    2022 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2022,
  • [39] SOC and SOH Joint Estimation of Lithium-Ion Battery Based on Improved Particle Filter Algorithm
    Tiezhou Wu
    Sizhe Liu
    Zhikun Wang
    Yiheng Huang
    Journal of Electrical Engineering & Technology, 2022, 17 : 307 - 317
  • [40] SOC and SOH Estimation for a Lithium-Ion Battery Using a Novel Adaptive Observer Based Approach
    Gholizadeh, Mehdi
    Yazdizadeh, Alireza
    2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, : 215 - 220