Segmentation based building detection approach from LiDAR point cloud

被引:31
|
作者
Ramiya A.M. [1 ]
Nidamanuri R.R. [1 ]
Krishnan R. [2 ]
机构
[1] Department of Earth and Space Sciences, Indian Institute of Space Science and Technology, Department of Space, Thiruvananthapuram, Kerala
[2] Amrita Vishwa Vidyapeetham, Coimbatore
关键词
Building detection; LiDAR; PCL; Remote sensing; Segmentation;
D O I
10.1016/j.ejrs.2016.04.001
中图分类号
学科分类号
摘要
Accurate building detection and reconstruction is an important challenge posed to the remote sensing community dealing with LiDAR point cloud. The inherent geometric nature of LiDAR point cloud provides a new dimension to the remote sensing data which can be used to produce accurate 3D building models at relatively less time compared to traditional photogrammetry based 3D reconstruction methods. 3D segmentation is a key step to bring out the implicit geometrical information from the LiDAR point cloud. This research proposes to use open source point cloud library (PCL) for 3D segmentation of LiDAR point cloud and presents a novel histogram based methodology to separate the building clusters from the non building clusters. The proposed methodology has been applied on two different airborne LiDAR datasets acquired over part of urban region around Niagara Falls, Canada and southern Washington, USA. An overall building detection accuracy of 100% and 82% respectively is achieved for the two datasets. The performance of proposed methodology has been compared with the commercially available Terrasolid software. The results show that the buildings detected using open source point cloud library produce comparable results with the buildings detected using commercial software (buildings detection accuracy: 86.3% and 89.2% respectively for the two datasets). © 2016 National Authority for Remote Sensing and Space Sciences
引用
收藏
页码:71 / 77
页数:6
相关论文
共 50 条
  • [41] Building Extraction from LIDAR Point Cloud Data Using Marked Point Process
    Quanhua Zhao
    Yu Li
    Xiaojun He
    Journal of the Indian Society of Remote Sensing, 2014, 42 : 529 - 538
  • [42] Point Cloud Segmentation with LIDAR Reflection Intensity Behavior
    Tatoglu, Akin
    Pochiraju, Kishore
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 786 - 790
  • [43] Camera and LiDAR Fusion for Point Cloud Semantic Segmentation
    Abdelkader, Ali
    Moustafa, Mohamed
    PROCEEDINGS OF SEVENTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2022, VOL. 3, 2023, 464 : 499 - 508
  • [44] Enhancing LiDAR Point Cloud Segmentation with Synthetic Data
    Inan, Burak Alp
    Rondao, Duarte
    Aouf, Nabil
    2023 31ST MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, MED, 2023, : 370 - 375
  • [45] Semantic Segmentation of Lidar Point Cloud in Rural Area
    Bayu, Azady
    Wibisono, Ari
    Wisesa, Hanif Arief
    Intizhami, Naili Suri
    Jatmiko, Wisnu
    Gamal, Ahmad
    2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION, NETWORKS AND SATELLITE (COMNETSAT), 2019, : 73 - 78
  • [46] A reversible transformer for LiDAR point cloud semantic segmentation
    Akwensi, Perpertual Hope
    Wang, Ruisheng
    2023 20TH CONFERENCE ON ROBOTS AND VISION, CRV, 2023, : 19 - 28
  • [47] Boosting Lidar 3D Object Detection with Point Cloud Semantic Segmentation
    Zhang, Xuchong
    Min, Chong
    Jia, Yijie
    Chen, Liming
    Zhang, Jingmin
    Sun, Hongbin
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 7614 - 7621
  • [48] Improved Tree Segmentation Algorithm Based on Backpack-LiDAR Point Cloud
    Zhu, Dongwei
    Liu, Xianglong
    Zheng, Yili
    Xu, Liheng
    Huang, Qingqing
    FORESTS, 2024, 15 (01):
  • [49] Federated Grouping Panoptic Segmentation for LiDAR Point Cloud based on Convolutional Network
    Shi, Chengzhang
    Own, Chung-Ming
    Zhou, Ruimin
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 6 - 13
  • [50] Ground segmentation algorithm of lidar point cloud based on ray-ransac
    Zhao, Yawei
    Liu, Yanju
    Yu, Yang
    Zhou, Jiawei
    International Journal of Circuits, Systems and Signal Processing, 2021, 15 : 970 - 977