AirDet: Few-Shot Detection without Fine-tuning for Autonomous Exploration

被引:0
|
作者
Li, Bowen [1 ,2 ]
Wang, Chen [1 ]
Reddy, Pranay [1 ,3 ]
Kim, Seungchan [1 ]
Scherer, Sebastian [1 ]
机构
[1] Robotics Institute, Carnegie Mellon University, United States
[2] School of Mechanical Engineering, Tongji University, China
[3] Electronics and Communication Engineering, IIITDM Jabalpur, India
来源
arXiv | 2021年
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Object detection
引用
收藏
相关论文
共 50 条
  • [31] Comparing Fine-Tuning, Zero and Few-Shot Strategies with Large Language Models in Hate Speech Detection in English
    Pan, Ronghao
    Garcia-Diaz, Jose Antonio
    Valencia-Garcia, Rafael
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 140 (03): : 2849 - 2868
  • [32] Contrastive Fine-tuning on Few Shot Intent Detection with Topological Intent Tree
    Yuan, Wei
    Dimkovski, Martin
    An, Aijun
    COMPANION OF THE WORLD WIDE WEB CONFERENCE, WWW 2023, 2023, : 464 - 468
  • [33] Few-shot Fine-tuning vs. In-context Learning: A Fair Comparison and Evaluation
    Mosbach, Marius
    Pimentel, Tiago
    Ravfogel, Shauli
    Klakow, Dietrich
    Elazar, Yanai
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 12284 - 12314
  • [34] Improving Pre-Training and Fine-Tuning for Few-Shot SAR Automatic Target Recognition
    Zhang, Chao
    Dong, Hongbin
    Deng, Baosong
    REMOTE SENSING, 2023, 15 (06)
  • [35] Dual Attention Relation Network With Fine-Tuning for Few-Shot EEG Motor Imagery Classification
    An, Sion
    Kim, Soopil
    Chikontwe, Philip
    Park, Sang Hyun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15479 - 15493
  • [36] Dual Attention Relation Network With Fine-Tuning for Few-Shot EEG Motor Imagery Classification
    An, Sion
    Kim, Soopil
    Chikontwe, Philip
    Park, Sang Hyun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15479 - 15493
  • [37] Few-Shot Object Detection on Remote Sensing Images via Shared Attention Module and Balanced Fine-Tuning Strategy
    Huang, Xu
    He, Bokun
    Tong, Ming
    Wang, Dingwen
    He, Chu
    REMOTE SENSING, 2021, 13 (19)
  • [38] Meta-Adapters: Parameter Efficient Few-shot Fine-tuning through Meta-Learning
    Bansal, Trapit
    Alzubi, Salaheddin
    Wang, Tong
    Lee, Jay-Yoon
    McCallum, Andrew
    INTERNATIONAL CONFERENCE ON AUTOMATED MACHINE LEARNING, VOL 188, 2022, 188
  • [39] Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning
    Liu, Haokun
    Tam, Derek
    Muqeeth, Mohammed
    Mohta, Jay
    Huang, Tenghao
    Raffel, Mohit Bansal Colin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [40] ReFine: Re-randomization before Fine-tuning for Cross-domain Few-shot Learning
    Oh, Jaehoon
    Kim, Sungnyun
    Ho, Namgyu
    Kim, Jin-Hwa
    Song, Hwanjun
    Yun, Se-Young
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 4359 - 4363