Rydberg-atom acceleration with pulsed Pearcey beams

被引:0
|
作者
Huang, Songxin [1 ]
Hong, Weiyi [1 ]
Wu, Ruihuan [1 ]
机构
[1] South China Normal Univ, Sch Informat & Optoelect Sci & Engn, Guangdong Prov Key Lab Nanophoton Funct Mat & Devi, Guangzhou 510006, Peoples R China
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2024年 / 130卷 / 11期
基金
中国国家自然科学基金;
关键词
LASER ACCELERATION;
D O I
10.1007/s00340-024-08318-6
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A novel approach is proposed for accelerating Rydberg atoms utilizing two-dimensional Pearcey beams instead of traditional circular symmetric beams such as Gaussian beams. The structure of the two-dimensional Pearcey optical field can achieve quasi-unidirectional acceleration of atoms within a small spot size, which is conducive to improving the detection efficiency. In addition, the self-focusing characteristic of this beam can significantly reduce the required intensity of the driving source compared to the traditional scheme using the Gaussian beams.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Linear dynamic range of a Rydberg-atom microwave superheterodyne receiver
    Wu, Fengchuan
    An, Qiang
    Sun, Zhanshan
    Fu, Yunqi
    PHYSICAL REVIEW A, 2023, 107 (04)
  • [42] Approaching the standard quantum limit of a Rydberg-atom microwave electrometer
    Tu, Hai-Tao
    Liao, Kai-Yu
    Wang, Hong-Lei
    Zhu, Yi-Fei
    Qiu, Si-Yuan
    Jiang, Hao
    Huang, Wei
    Bian, Wu
    Yan, Hui
    Zhu, Shi-Liang
    SCIENCE ADVANCES, 2024, 10 (51):
  • [43] Dependence of Rydberg-Atom Optical Lattices on the Angular Wave Function
    Anderson, S. E.
    Raithel, G.
    PHYSICAL REVIEW LETTERS, 2012, 109 (02)
  • [44] Detailed Balance of Thermalization Dynamics in Rydberg-Atom Quantum Simulators
    Kim, Hyosub
    Park, YeJe
    Kim, Kyungtae
    Sim, H-S
    Ahn, Jaewook
    PHYSICAL REVIEW LETTERS, 2018, 120 (18)
  • [45] Rydberg-Atom Terahertz Heterodyne Receiver with Ultrahigh Spectral Resolution
    She, Zhenyue
    Zhu, Xiaojie
    Lin, Yayi
    Li, Xianzhe
    Yang, Xiaolin
    Shang, Yanfei
    Teng, Yuqin
    Tu, Haitao
    Liao, Kaiyu
    Zhang, Caixia
    Liu, Xiaohong
    Chen, Jiehua
    Huang, Wei
    CHINESE PHYSICS LETTERS, 2024, 41 (08)
  • [46] Realizing topological edge states with Rydberg-atom synthetic dimensions
    S. K. Kanungo
    J. D. Whalen
    Y. Lu
    M. Yuan
    S. Dasgupta
    F. B. Dunning
    K. R. A. Hazzard
    T. C. Killian
    Nature Communications, 13
  • [47] Rydberg-Atom Sensors in Bichromatic Radio-Frequency Fields
    Noaman M.
    Booth D.W.
    Shaffer J.P.
    Physical Review Applied, 2023, 20 (02)
  • [48] Low-Frequency Communication Based on Rydberg-Atom Receiver
    Xie, Yipeng
    Lei, Mingwei
    Zhang, Jianquan
    Dong, Wenbo
    Shi, Meng
    ELECTRONICS, 2025, 14 (05):
  • [49] Near-field antenna measurement based on Rydberg-atom probe
    Shi, Y. U. A. N. S. H. E. N. G.
    Ouyang, K. A. N. G.
    Ren, W. U.
    LI, W. E. I. M. I. N. G.
    Cao, M. E. N. G.
    Xue, Z. H. E. N. G. H. U., I
    Shi, M. E. N. G.
    OPTICS EXPRESS, 2023, 31 (12) : 18931 - 18938
  • [50] Quantum-state information retrieval in a Rydberg-atom data register
    Ahn, J.
    Rangan, C.
    Hutchinson, D.N.
    Bucksbaum, P.H.
    2002, American Physical Society (66):