CoviExpert: COVID-19 detection from chest X-ray using CNN

被引:5
|
作者
Arivoli A. [1 ]
Golwala D. [1 ]
Reddy R. [1 ]
机构
[1] School of Computer Science and Engineering, Vellore Institute of Technology, Vellore
来源
Measurement: Sensors | 2022年 / 23卷
关键词
CNN; COVID-19; CoviExpert; CT scan; Deep learning; X-ray;
D O I
10.1016/j.measen.2022.100392
中图分类号
学科分类号
摘要
COVID-19 continues to threaten the world with its impact and severity. This pandemic has created a sense of havoc and shook the world stretching the medical fraternity to an unimaginable extent, who are now facing fatigue and exhaustion. Due to the rapid increase in cases all across the globe demanding extensive medical care, people are hunting for resources like testing facilities, medical drugs and even hospital beds. Even people with mild to moderate infection are panicking and mentally giving up due to anxiety and desperation. To combat these issues, it is necessary to find an inexpensive and faster way to save lives and bring about a much-needed change. The most fundamental way through which this can be achieved is with the help of radiology which involves examination of Chest X rays. They are primarily used for the diagnosis of this disease. But due to panic and severity of this disease a recent trend of performing CT scans has been observed. This has been under scrutiny since it exposes patients to a very high level of radiation known to increase the probability of cancer. As quoted by the AIIMS Director, one CT scan is equivalent to around 300–400 Chest X-rays. Also, it is relatively a much costlier testing method. Hence, in this report, we have presented a Deep learning approach which can detect covid 19 positive cases from Chest X ray images. It involves creation of a Deep learning based Convolutional Neural Network (CNN) using Keras (python library) and integrating the model with a front-end user interface for ease of use. This leads up to the creation of a software which we have named as CoviExpert. It uses the sequential Keras model which is built layer by layer. All the layers are trained independently to make independent predictions which are then combined to give the final output. 1584 images of Chest X-rays of both COVID-19 positive and negative patients have been used as training data. 177 images have been used as testing data. The proposed approach gives a classification accuracy of 99%. CoviExpert can be used on any device by any medical professional to detect Covid positive patients within a few seconds. © 2022 The Authors
引用
收藏
相关论文
共 50 条
  • [41] Computer Aided COVID-19 Diagnosis in Pandemic Era Using CNN in Chest X-ray Images
    Alqahtani, Ali
    Zahoor, Mirza Mumtaz
    Nasrullah, Rimsha
    Fareed, Aqil
    Cheema, Ahmad Afzaal
    Shahrose, Abdullah
    Irfan, Muhammad
    Alqhatani, Abdulmajeed
    Alsulami, Abdulaziz A.
    Zaffar, Maryam
    Rahman, Saifur
    LIFE-BASEL, 2022, 12 (11):
  • [42] Covid-19 Detection in Chest X-ray Images with Deep Learning
    Ozdemir, Zeynep
    Yalim Keles, Hacer
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [43] Automatic detection of COVID-19 and pneumonia from chest X-ray images using texture features
    Sheikhi, Farnaz
    Taghdiri, Aliakbar
    Moradisabzevar, Danial
    Rezakhani, Hanieh
    Daneshkia, Hasti
    Goodarzi, Mobina
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (18): : 21449 - 21473
  • [44] Covid-19 Detection from Chest X-Ray Images Using Advanced Deep Learning Techniques
    Mahajan, Shubham
    Raina, Akshay
    Abouhawwash, Mohamed
    Gao, Xiao-Zhi
    Pandit, Amit Kant
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (01): : 1541 - 1556
  • [45] Detection of COVID-19 from CT and Chest X-ray Images Using Deep Learning Models
    Zouch, Wassim
    Sagga, Dhouha
    Echtioui, Amira
    Khemakhem, Rafik
    Ghorbel, Mohamed
    Mhiri, Chokri
    Ben Hamida, Ahmed
    ANNALS OF BIOMEDICAL ENGINEERING, 2022, 50 (07) : 825 - 835
  • [46] Automatic detection of COVID-19 and pneumonia from chest X-ray images using texture features
    Farnaz Sheikhi
    Aliakbar Taghdiri
    Danial Moradisabzevar
    Hanieh Rezakhani
    Hasti Daneshkia
    Mobina Goodarzi
    The Journal of Supercomputing, 2023, 79 : 21449 - 21473
  • [47] Clustering and Visualizing of Chest X-ray Images for Covid-19 Detection
    Saaudi, Ahmed
    Mansoor, Riyadh
    Abed, Ahmed K.
    PROCEEDING OF 2021 2ND INFORMATION TECHNOLOGY TO ENHANCE E-LEARNING AND OTHER APPLICATION (IT-ELA 2021), 2021, : 35 - 39
  • [48] CCTCOVID: COVID-19 detection from chest X-ray images using Compact Convolutional Transformers
    Marefat, Abdolreza
    Marefat, Mahdieh
    Hassannataj Joloudari, Javad
    Nematollahi, Mohammad Ali
    Lashgari, Reza
    FRONTIERS IN PUBLIC HEALTH, 2023, 11
  • [49] COVID-19 detection and heatmap generation in chest x-ray images
    Kusakunniran, Worapan
    Karnjanapreechakorn, Sarattha
    Siriapisith, Thanongchai
    Borwarnginn, Punyanuch
    Sutassananon, Krittanat
    Tongdee, Trongtum
    Saiviroonporn, Pairash
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (S1)
  • [50] COVID-19 detection from chest x-ray using MobileNet and residual separable convolution block
    Tangudu, V. Santhosh Kumar
    Kakarla, Jagadeesh
    Venkateswarlu, Isunuri Bala
    SOFT COMPUTING, 2022, 26 (05) : 2197 - 2208