Intelligent tool condition monitoring in grinding

被引:0
|
作者
Denkena B. [1 ]
Breidenstein B. [1 ]
Strug M. [1 ]
机构
[1] Institut für Fertigungstechnik, Werkzeug-maschinen der Leibniz Universität Hannover
来源
JOT, Journal fuer Oberflaechentechnik | 2019年 / 59卷 / 11期
关键词
D O I
10.1007/s35144-019-0376-y
中图分类号
学科分类号
摘要
Mithilfe von 3D-Laserscans und eines selbstlernenden Algorithmus lässt sich der Verschleiß von Schleifscheiben erstmals schnell und prozessnah messen. Die Verknüpfung von Schleifscheibentopografiemessung und Werkzeugschleifen birgt großes Potenzial zur Effizienzsteigerung und Ressourcenschonung. Das entwickelte Messsystem ermöglicht prozessnahe und effiziente Topografieerfassungen an Schleifscheiben, wie sie bisher nicht umgesetzt werden konnten.
引用
下载
收藏
页码:62 / 65
页数:3
相关论文
共 50 条
  • [31] Intelligent Vehicle Condition Monitoring System
    Chesnokov, A. S.
    Gorodnichev, M. G.
    Gavrish, K. A.
    Zhidkova, M. A.
    2019 SYSTEMS OF SIGNALS GENERATING AND PROCESSING IN THE FIELD OF ON BOARD COMMUNICATIONS, 2019,
  • [32] Neural Tool Condition Estimation in The Grinding of Advanced Ceramics
    Nakai, M. E.
    Junior, H. G.
    Aguiar, P. R.
    Bianchi, E. C.
    Spatti, D. H.
    IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (01) : 62 - 68
  • [33] In-process self-configuring approach to develop intelligent tool condition monitoring systems
    Hassan, Mahmoud
    Sadek, Ahmad
    Attia, Helmi
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2024, 73 (01) : 81 - 84
  • [34] Development of an Intelligent Tool Condition Monitoring System to Identify Manufacturing Tradeoffs and Optimal Machining Conditions
    Lee, Wo Jae
    Mendis, Gamini P.
    Sutherland, John W.
    SUSTAINABLE MANUFACTURING FOR GLOBAL CIRCULAR ECONOMY, 2019, 33 : 256 - 263
  • [35] Intelligent Tool Condition Monitoring Based on Multi-Scale Convolutional Recurrent Neural Network
    Cao, Xincheng
    Yao, Bin
    Chen, Binqiang
    He, Wangpeng
    Guo, Suqin
    Chen, Kun
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2023, E106D (05) : 644 - 652
  • [36] Self-configuring neural network and its application to the tool condition intelligent monitoring system
    Lei, Ming
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 1993, 4 (01): : 14 - 16
  • [37] Condition monitoring of the grinding process using light scattering
    Griffiths, BJ
    Middleton, RH
    Wilkie, BA
    WEAR, 1996, 198 (1-2) : 39 - 45
  • [38] The developing status of condition monitoring systems in grinding processes
    Liu, Q
    Wang, Y
    Geldart, M
    Chen, X
    Gindy, N
    ADVANCES IN MANUFACTURING TECHNOLOGY-XVI, 2001, : 533 - 537
  • [39] Tool wear monitoring - an intelligent approach
    Rao, CS
    Srikant, RR
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2004, 218 (08) : 905 - 912
  • [40] Tool condition monitoring of aluminum oxide grinding wheel in dressing operation using acoustic emission and neural networks
    Moia, D. F. G.
    Thomazella, I. H.
    Aguiar, P. R.
    Bianchi, E. C.
    Martins, C. H. R.
    Marchi, Marcelo
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2015, 37 (02) : 627 - 640