The role of hubness in high-dimensional data analysis

被引:0
|
作者
Tomašev, Nenad [1 ]
机构
[1] Artificial Intelligence Laboratory, Jožef Stefan Institute, Jamova 39, Ljubljana,1000, Slovenia
来源
Informatica (Slovenia) | 2014年 / 38卷 / 04期
关键词
Curse of dimensionality - Doctoral dissertations - High dimensional data - High-dimensional data analysis - Hubness;
D O I
暂无
中图分类号
学科分类号
摘要
This article presents a summary of the doctoral dissertation of the author, which addresses the task of machine learning under hubness in intrinsically high-dimensional data.
引用
收藏
页码:387 / 388
相关论文
共 50 条
  • [21] FEATURE SELECTION FOR HIGH-DIMENSIONAL DATA ANALYSIS
    Verleysen, Michel
    ECTA 2011/FCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION THEORY AND APPLICATIONS AND INTERNATIONAL CONFERENCE ON FUZZY COMPUTATION THEORY AND APPLICATIONS, 2011,
  • [22] High-dimensional data
    Geubbelmans, Melvin
    Rousseau, Axel-Jan
    Valkenborg, Dirk
    Burzykowski, Tomasz
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2023, 164 (03) : 453 - 456
  • [23] High-dimensional data
    Amaratunga, Dhammika
    Cabrera, Javier
    JOURNAL OF THE NATIONAL SCIENCE FOUNDATION OF SRI LANKA, 2016, 44 (01): : 3 - 9
  • [24] Hubness-aware shared neighbor distances for high-dimensional -nearest neighbor classification
    Tomasev, Nenad
    Mladenic, Dunja
    KNOWLEDGE AND INFORMATION SYSTEMS, 2014, 39 (01) : 89 - 122
  • [25] On the Behavior of Intrinsically High-Dimensional Spaces: Distances, Direct and Reverse Nearest Neighbors, and Hubness
    Angiulli, Fabrizio
    JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 18
  • [26] On landmark selection and sampling in high-dimensional data analysis
    Belabbas, Mohamed-Ali
    Wolfe, Patrick J.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1906): : 4295 - 4312
  • [27] Principal component analysis for sparse high-dimensional data
    Raiko, Tapani
    Ilin, Alexander
    Karhunen, Juha
    NEURAL INFORMATION PROCESSING, PART I, 2008, 4984 : 566 - 575
  • [28] Cluster analysis of high-dimensional data: A case study
    Bean, R
    McLachlan, G
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING IDEAL 2005, PROCEEDINGS, 2005, 3578 : 302 - 310
  • [30] A modified linear discriminant analysis for high-dimensional data
    Hyodo, Masashi
    Yamada, Takayuki
    Himeno, Tetsuto
    Seo, Takashi
    HIROSHIMA MATHEMATICAL JOURNAL, 2012, 42 (02) : 209 - 231