Short-term power load forecasting based on big data

被引:0
|
作者
State Grid Information & Telecommunication Branch, Xicheng District, Beijing [1 ]
100761, China
不详 [2 ]
100070, China
不详 [3 ]
100031, China
机构
来源
关键词
D O I
10.13334/j.0258-8013.pcsee.2015.01.005
中图分类号
学科分类号
摘要
The short-term power load forecasting method had been researched based on the big data. And combined the local weighted linear regression and cloud computing platform, the parallel local weighted linear regression model was established. In order to eliminate the bad data, bad data classification model was built based on the maximum entropy algorithm to ensure the effectiveness of the historical data. The experimental data come from a smart industry park of Gansu province. Experimental results show that the proposed parallel local weighted linear regression model for short-term power load forecasting is feasible; and the average root mean square error is 3. 01% and fully suitable for the requirements of load forecasting, moreover, it can greatly reduce compute time of load forecasting, and improve the prediction accuracy. © 2015 Chin. Soc. for Elec. Eng..
引用
收藏
相关论文
共 50 条
  • [21] Research on short-term power load forecasting based on VMD and GRU
    Sun, Haoyue
    Yu, Zhicheng
    Zhang, Bining
    PLOS ONE, 2024, 19 (07):
  • [22] Short-term Power Load Forecasting Based on Clustering and XGBoost Method
    Liu, Yahui
    Luo, Huan
    Zhao, Bing
    Zhao, Xiaoyong
    Han, Zongda
    PROCEEDINGS OF 2018 IEEE 9TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2018, : 536 - 539
  • [23] A Hybrid System Based on LSTM for Short-Term Power Load Forecasting
    Jin, Yu
    Guo, Honggang
    Wang, Jianzhou
    Song, Aiyi
    ENERGIES, 2020, 13 (23)
  • [24] Short-term power load forecasting based on SKDR hybrid model
    Yuan, Yongliang
    Yang, Qingkang
    Ren, Jianji
    Mu, Xiaokai
    Wang, Zhenxi
    Shen, Qianlong
    Li, Yanan
    ELECTRICAL ENGINEERING, 2024,
  • [25] Short-term power load forecasting based on DQN-LSTM
    Guo, Xifeng
    Jiang, Yuxin
    Li, Lingyan
    Fu, Guojiang
    Yao, Shu
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 855 - 860
  • [26] Short-term Power Load Forecasting Based on CNN-BiLSTM
    Zhu L.
    Xun Z.
    Wang Y.
    Cui Q.
    Chen W.
    Lou J.
    Zhu, Lingjian (zlj_zhy@126.com), 1600, Power System Technology Press (45): : 4532 - 4539
  • [27] Short-term power load forecasting based on improved Autoformer model
    Fan X.
    Li Y.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2024, 44 (04): : 171 - 177
  • [28] Power short-term load forecasting based on QPSO-SVM
    Zhu, Xing Tong
    Xu, Bo
    MANUFACTURING ENGINEERING AND AUTOMATION II, PTS 1-3, 2012, 591-593 : 1311 - 1314
  • [29] Short-Term Power Load Forecasting Based on a Combination of VMD and ELM
    Li, Wei
    Quan, Congxin
    Wang, Xuyang
    Zhang, Shu
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2018, 27 (05): : 2143 - 2154
  • [30] A Short-term Load Forecasting Based On Fuzzy Identification In Power System
    Liang Yu
    Wang Na
    Fan Li-ping
    2011 INTERNATIONAL CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND AUTOMATION (CCCA 2011), VOL III, 2010, : 197 - 199