Two-dimensional direct Z-scheme AlN/GaS-SiP heterojunctions enhance photocatalytic hydrogen production from water: a DFT study

被引:0
|
作者
Gong, Zeting [1 ,2 ]
Yao, Yongsheng [1 ,2 ]
Liu, Yaozhong [1 ,2 ]
Liang, Zheng [1 ,2 ]
Li, Junyao [1 ,2 ]
Tang, Zhenkun [1 ,2 ]
Wei, Xiaolin [1 ,2 ]
机构
[1] Hengyang Normal Univ, Univ Hunan Prov, Key Lab Micronano Energy Mat & Applicat Technol, Hengyang 421002, Peoples R China
[2] Hengyang Normal Univ, Coll Phys & Elect Engn, Hengyang 421002, Peoples R China
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; ELECTRONIC-STRUCTURE; HETEROSTRUCTURE; PERFORMANCE; EFFICIENCY;
D O I
10.1039/d4cp02738h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photocatalytic water splitting for hydrogen production offers a feasible solution to the problems of energy shortages and environmental pollution. However, its low photocatalytic efficiency limits the application of this technology in real world scenarios. In this study, a two-dimensional AlN/PSi-GaS-I van der Waals heterojunction is constructed and the properties of water photolysis are studied based on first-principles calculations. The results demonstrate that AlN/PSi-GaS-I exhibits exceptional photocatalytic performance with good stability, a narrow bandgap, appropriate band-edge position, a broader light absorption range and efficient separation of photogenerated electron-hole pairs. Moreover, the Gibbs free energies of different intermediates throughout the entire reaction process are calculated based on type-II and Z-scheme reaction mechanisms. By comparing the free energy barriers of the two pathways, it is observed that the Z-scheme reaction pathway has a lower energy barrier. Consequently, it can be concluded that AlN/PSi-GaS-I belongs to the direct Z-scheme heterojunction. These findings suggest that AlN/PSi-GaS-I exhibits an enhanced redox capacity, efficiently driving the water splitting reaction. More excitingly, the AlN/PSi-GaS-I can undergo spontaneous photocatalytic reactions under acidic conditions when provided with adequate optical driving force. This study not only proves that AlN/PSi-GaS-I is a promising high-efficiency photocatalyst for water splitting, but also describes a method for determining direct Z-scheme heterojunctions, which offers theoretical guidance for the design of efficient and stable photocatalysts. We elucidate the method for determining type-II and direct Z-scheme heterojunctions from the perspective of dynamic simulation.
引用
收藏
页码:26304 / 26313
页数:10
相关论文
共 50 条
  • [41] Indirect Z-scheme hydrogen production photocatalyst based on two-dimensional GeC/MoSi2N4 van der Waals heterostructures
    Xu, Liang
    Zhang, Ying
    Ma, Zongle
    Chen, Tong
    Guo, Chengjun
    Wu, Chengang
    Li, Haotian
    Huang, Xin
    Tang, Shuaihao
    Wang, Ling -Ling
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (48) : 18301 - 18314
  • [42] Mechanism of the two-dimensional WSeTe/Zr2CO2 direct Z-scheme van der Waals heterojunction as a photocatalyst for water splitting
    Cao, Jiameng
    Zhang, Xianbin
    Zhao, Shihan
    Lu, Xiaoyue
    Ma, Haohao
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (35) : 21030 - 21039
  • [43] Phosphorus-modified two-dimensional graphdiyne (CnH2n-2)/ZnCdS forms S-scheme heterojunctions for photocatalytic hydrogen production
    Liu, Yanan
    Ma, Xiaohua
    Jiang, Xudong
    Jin, Zhiliang
    NANOSCALE, 2022, 14 (33) : 12077 - 12089
  • [44] Two-dimensional g-C3N4/TiO2 nanocomposites as vertical Z-scheme heterojunction for improved photocatalytic water disinfection
    Liu, Yue
    Zeng, Xiangkang
    Hu, Xiaoyi
    Hu, Jian
    Wang, Zhouyou
    Yin, Yichun
    Sun, Chenghua
    Zhang, Xiwang
    CATALYSIS TODAY, 2019, 335 : 243 - 251
  • [45] Toward practical solar-driven photocatalytic water splitting on two-dimensional MoS2 based solid-state Z-scheme and S-scheme heterostructure
    Raizada, Pankaj
    Nguyen, Thi Hong Chuong
    Patial, Shilpa
    Singh, Pardeep
    Bajpai, Archana
    Nguyen, Van-Huy
    Nguyen, Dang Le Tri
    Nguyen, Xuan Cuong
    Khan, Aftab Aslam Parwaz
    Rangabhashiyam, S.
    Kim, Soo Young
    Van Le, Quyet
    FUEL, 2021, 303
  • [46] Construction of multi-dimensional Cu2Se@amorphous carbon@graphene nanobelt/g-C3N4 Z-scheme heterojunctions for photocatalytic hydrogen production
    Liu, Xing
    Li, Yudong
    Li, Pengwei
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 686
  • [47] Mechanistic study of two-dimensional CrS2/Sc2CF2 direct Z-scheme heterojunction as the solar-driven water-splitting photocatalyst
    Cao, Jiameng
    Zhang, Xianbin
    Zhao, Shihan
    MOLECULAR PHYSICS, 2022, 120 (17)
  • [48] Boron doping induced charge transfer switching of a C3N4/ZnO photocatalyst from Z-scheme to type II to enhance photocatalytic hydrogen production
    Kim, Donghyung
    Yong, Kijung
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 282 (282)
  • [49] h2D-C2N/C3B Two-Dimensional Heterostructures: A Direct Z-Scheme Photocatalyst for Overall Water Splitting
    Ding, Chang-Chun
    Sun, Yu-Jie
    Liu, Tong
    Li, Hui-Dong
    Fan, Qun-Chao
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (08): : 3377 - 3383
  • [50] Hydrogen production of overall water splitting with direct Z-scheme driven by antimonene and arsenide nanoribbon heterostructures: Insight from electronic properties and carrier nonadiabatic dynamics
    Liu, Miao
    Yang, Chuan-Lu
    Li, Yongqing
    Wang, Mei-Shan
    Ma, Xiao-Guang
    JOURNAL OF POWER SOURCES, 2024, 594