Effect of raw materials and proportion on mechanical properties of magnesium phosphate cement

被引:12
|
作者
Zheng Y. [1 ,2 ]
Zhou Y. [3 ,4 ]
Huang X. [1 ,2 ]
Luo H. [1 ,2 ]
机构
[1] School of Transportation, Southeast University, Nanjing
[2] National Demonstration Center for Experimental Education of Road and Traffic Engineering, Southeast University, Nanjing
[3] School of Materials Science and Engineering, Southeast University, Nanjing
[4] State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Research Institute of Building Science Co., Nanjing
基金
中国国家自然科学基金;
关键词
Fiber reinforcement; Magnesium phosphate cement; Mechanical properties; Proportion of mixture;
D O I
10.1016/j.jreng.2022.06.001
中图分类号
学科分类号
摘要
Magnesium phosphate cement (MPC) cementitious material is a phosphate cement-based material with strength formed by a serious of acid-base neutralization reactions among magnesium oxide, phosphate retarder and water, which has a high early strength and a broad application prospect in the field of pavement rehabilitation. This review collects and organizes the latest progress in the field of research on the influencing factors of mechanical properties of magnesium phosphate cementitious materials worldwide in recent years, and discusses the possibilities of application in airport engineering. The type of phosphate has a great influence on the reaction products, and the strength of the reaction products of ammonium salt is higher. Borax is the most commonly used retarder, and the retarding effect is related to the ratio of boron to magnesium. However, borax retarders have an adverse effect on the strength of MPC. In terms of the influence of mineral admixtures on the properties of MPC, fly ash, silica fume and metakaolin, as common mineral admixtures, have a positive influence on the mechanical properties of MPC, but the mechanism and degree of the influence of the three materials on the strength of MPC are slightly different; Aggregates can also improve the volume stability and mechanical properties of MPC by forming skeleton structure and slowing down the exothermic reaction. In fiber reinforced MPC matrix, steel fiber is the most widely used and the bonding performance between special-shaped steel fiber and MPC matrix is higher than that of straight fiber; basalt fiber has also been proved to be used to improve the mechanical properties of MPC system. © 2022 The Authors
引用
收藏
页码:243 / 251
页数:8
相关论文
共 50 条
  • [21] The effect of slag on the properties of magnesium potassium phosphate cement
    Tan, Yongshan
    Yu, Hongfa
    Li, Ying
    Bi, Wanli
    Yao, Xiang
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 126 : 313 - 320
  • [22] Effect of silt modification on the properties of magnesium phosphate cement
    Wang, Haikuan
    Li, Zhitang
    Luo, Qiling
    Long, Wujian
    FRONTIERS IN MATERIALS, 2023, 10
  • [23] Effect of calcination temperature of magnesium silicate on the properties of magnesium phosphate cement
    Ichraf Bouaoun
    Halim Hammi
    Abdelkarim Aït-Mokhtar
    Ameur El Amine Hamami
    Adel M’nif
    Journal of the Australian Ceramic Society, 2017, 53 : 351 - 359
  • [24] Effect of calcination temperature of magnesium silicate on the properties of magnesium phosphate cement
    Bouaoun, Ichraf
    Hammi, Halim
    Ait-Mokhtar, Abdelkarim
    Hamami, Ameur El Amine
    M'nif, Adel
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2017, 53 (02) : 351 - 359
  • [25] Effect of fineness of magnesium oxide on properties of magnesium potassium phosphate cement
    Chang, Yuan
    Shi, Caijun
    Yang, Nan
    Yang, Jianming
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2013, 41 (04): : 492 - 499
  • [26] Effect of magnesium phosphate cement on the mechanical properties and microstructure of recycled aggregate and recycled aggregate concrete
    Chen, Xuyong
    Xiao, Xuehao
    Wu, Qiaoyun
    Cheng, Ziyang
    Xu, Xiong
    Cheng, Shukai
    Zhao, Rixu
    JOURNAL OF BUILDING ENGINEERING, 2022, 46
  • [27] Effect of coral sand on the mechanical properties and hydration mechanism of magnesium potassium phosphate cement mortar
    Liu, Hao
    Yang, Huamei
    Wei, Houzhen
    Yu, Jining
    Meng, Qingshan
    Yan, Rongtao
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2024, 25 (02): : 116 - 129
  • [28] Effect of fly ash and metakaolin on the mechanical properties and microstructure of magnesium ammonium phosphate cement paste
    Zhang, Huasheng
    Zhang, Qingsong
    Zhang, Mi
    Tang, Shihao
    Pei, Yan
    Skoczylas, Frederic
    Feng, Shuo
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 424
  • [29] Mechanical properties of basalt fiber reinforced magnesium phosphate cement composites
    Qin, Jihui
    Qian, Jueshi
    Li, Zhen
    You, Chao
    Dai, Xiaobing
    Yue, Yanfei
    Fan, Yingru
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 188 : 946 - 955
  • [30] Bonding properties of magnesium phosphate cement-based repair materials
    Shi, Caijun
    Yang, Nan
    Chong, Linlin
    Wu, Zemei
    Yang, Jianming
    CONCRETE SOLUTIONS, 2016, : 293 - 300