Total energy conservation in ALE schemes for compressible flows

被引:0
|
作者
Dervieux A. [1 ]
Farhat C. [2 ]
Koobus B. [3 ]
Vázquez M. [4 ]
机构
[1] INRIA, Projet Tropics, 06902 Sophia-Antipolis cedex
[2] Dept of Mechanical Engineering, Institute for Computational and Mathematical Engineering, Stanford University
[3] Mathématiques, Université de Montpellier II, CC.051
[4] CASE Dpt. Barcelona Supercomputing Center BSC-CNS, 08034 Barcelona
关键词
Arbitrary Lagrangian Eulerian; Compressible flow; Discrete geometric conservation law; Spatial discretization; Total energy conservation;
D O I
10.3166/ejcm.19.337-363
中图分类号
学科分类号
摘要
The numerical prediction of interaction phenomena between a compressible flow model with a moving domain and other physical models requires that the work performed on the fluid is properly translated into total fluid energy variation. We present a numerical model relying on an Arbitrary Lagrangian-Eulerian (ALE) unstructured vertex-centered finite volume that satisfies this condition together with the Geometric Conservation Law. We apply this numerical scheme to the solution of a 3D fluid-structure interaction problem. The results are contrasted with those obtained by the energy non-conservative counterpart. © 2010 Lavoisier, Paris.
引用
收藏
页码:337 / 363
页数:26
相关论文
共 50 条
  • [41] Kinetic energy and entropy preserving schemes for compressible flows by split convective forms (vol 375, pg 823, 2018)
    Kuya, Yuichi
    Totani, Kosuke
    Kawai, Soshi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 391 : 397 - 397
  • [42] CFD simulation of compressible fluid flows using conservation element method
    Huang, CZ
    Proceedings of the Sixth International Conference on Fluid Power Transmission and Control, 2005, : 439 - 442
  • [43] A SINGULARITIES TRACKING CONSERVATION-LAWS SCHEME FOR COMPRESSIBLE DUCT FLOWS
    FALCOVITZ, J
    BIRMAN, A
    JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 115 (02) : 431 - 439
  • [44] Conservation laws and evolution schemes in geodesic, hydrodynamic, and magnetohydrodynamic flows
    Markakis, Charalampos
    Uryu, Koji
    Gourgoulhon, Eric
    Nicolas, Jean-Philippe
    Andersson, Nils
    Pouri, Athina
    Witzany, Vojtech
    PHYSICAL REVIEW D, 2017, 96 (06)
  • [45] Exploring shock-capturing schemes for Particles on Demand simulation of compressible flows
    Reyhanian, Ehsan
    Dorschner, Benedikt
    Karlin, Ilya
    COMPUTERS & FLUIDS, 2023, 263
  • [46] Towards optimal high-order compact schemes for simulating compressible flows
    Zhang, Huaibao
    Zhang, Fan
    Xu, Chunguang
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 355 : 221 - 237
  • [47] Numerical treatment of the energy equation in compressible flows simulations
    De Michele, C.
    Coppola, G.
    COMPUTERS & FLUIDS, 2023, 250
  • [48] Implicit Weighted Essentially Nonoscillatory Schemes with Antidiffusive Flux for Compressible Viscous Flows
    Yang, Jaw-Yen
    Hsieh, Tsang-Jen
    Wang, Ching-Hua
    AIAA JOURNAL, 2009, 47 (06) : 1435 - 1444
  • [49] Simple derivation of high-resolution schemes for compressible flows by kinetic approach
    Ohwada, T
    Fukata, S
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 211 (02) : 424 - 447
  • [50] LOW MACH NUMBER LIMIT OF SOME STAGGERED SCHEMES FOR COMPRESSIBLE BAROTROPIC FLOWS
    Herbin, R.
    Latche, J-C
    Saleh, K.
    MATHEMATICS OF COMPUTATION, 2021, 90 (329) : 1039 - 1087