Total energy conservation in ALE schemes for compressible flows

被引:0
|
作者
Dervieux A. [1 ]
Farhat C. [2 ]
Koobus B. [3 ]
Vázquez M. [4 ]
机构
[1] INRIA, Projet Tropics, 06902 Sophia-Antipolis cedex
[2] Dept of Mechanical Engineering, Institute for Computational and Mathematical Engineering, Stanford University
[3] Mathématiques, Université de Montpellier II, CC.051
[4] CASE Dpt. Barcelona Supercomputing Center BSC-CNS, 08034 Barcelona
关键词
Arbitrary Lagrangian Eulerian; Compressible flow; Discrete geometric conservation law; Spatial discretization; Total energy conservation;
D O I
10.3166/ejcm.19.337-363
中图分类号
学科分类号
摘要
The numerical prediction of interaction phenomena between a compressible flow model with a moving domain and other physical models requires that the work performed on the fluid is properly translated into total fluid energy variation. We present a numerical model relying on an Arbitrary Lagrangian-Eulerian (ALE) unstructured vertex-centered finite volume that satisfies this condition together with the Geometric Conservation Law. We apply this numerical scheme to the solution of a 3D fluid-structure interaction problem. The results are contrasted with those obtained by the energy non-conservative counterpart. © 2010 Lavoisier, Paris.
引用
收藏
页码:337 / 363
页数:26
相关论文
共 50 条
  • [1] Total energy conservation in ALE schemes for compressible flows
    Dervieux, Alain
    Farhat, Charbel
    Koobus, Bruno
    Vazquez, Mariano
    EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, 2010, 19 (04): : 337 - 363
  • [2] An ALE pairwise-relaxing meshless method for compressible flows
    Liu, Xiaoxing
    Morita, Koji
    Zhang, Shuai
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 387 : 1 - 13
  • [3] Kinetic energy and entropy preserving schemes for compressible flows by split convective forms
    Kuya, Yuichi
    Totani, Kosuke
    Kawai, Soshi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 375 : 823 - 853
  • [4] Decoupling schemes for predicting compressible fluid flows
    Vabishchevich, Petr N.
    COMPUTERS & FLUIDS, 2018, 171 : 94 - 102
  • [5] POSITIVE SCHEMES AND SHOCK MODELING FOR COMPRESSIBLE FLOWS
    JAMESON, A
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1995, 20 (8-9) : 743 - 776
  • [6] High-order ALE schemes for incompressible capillary flows
    Montefuscolo, Felipe
    Sousa, Fabricio S.
    Buscaglia, Gustavo C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 278 : 133 - 147
  • [7] An ALE method for compressible multi-material flows on unstructured grids
    Luo, H
    Baum, JD
    Löhner, R
    Shock Waves, Vols 1 and 2, Proceedings, 2005, : 1157 - 1162
  • [8] Energy conservation for the weak solutions to the equations of compressible magnetohydrodynamic flows in three dimensions
    Wang, Tingsheng
    Zhao, Xinhua
    Chen, Yingshan
    Zhang, Mei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 480 (02)
  • [9] A discontinuous Galerkin ALE method for compressible viscous flows in moving domains
    Lomtev, I
    Kirby, RM
    Karniadakis, GE
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 155 (01) : 128 - 159
  • [10] Conservative upwind difference schemes for compressible flows in a duct
    Glaister, P.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (07) : 1787 - 1796