Spatio-temporal sensor data processing techniques

被引:4
|
作者
Kim J.-J. [1 ]
机构
[1] Dept. of Computer Science and Engineering, Korea Polytechnic University, Siheung
来源
Kim, Jeong-Joon (jjkim@kpu.ac.kr) | 1600年 / Korea Information Processing Society卷 / 13期
基金
新加坡国家研究基金会;
关键词
Multi-dimensional operator; Multi-dimensional Spatio-temporal data Type; Sensor Networks; Sensor query processing system;
D O I
10.3745/JIPS.04.0047
中图分类号
学科分类号
摘要
As technologies related to sensor network are currently emerging and the use of GeoSensor is increasing along with the development of Internet of Things (IoT) technology, spatial query processing systems to efficiently process spatial sensor data are being actively studied. However, existing spatial query processing systems do not support a spatial-temporal data type and a spatial-temporal operator for processing spatialtemporal sensor data. Therefore, they are inadequate for processing spatial-temporal sensor data like GeoSensor. Accordingly, this paper developed a spatial-temporal query processing system, for efficient spatial-temporal query processing of spatial-temporal sensor data in a sensor network. Lastly, this paper verified the utility of System through a scenario, and proved that this system's performance is better than existing systems through performance assessment of performance time and memory usage. © 2017 KIPS.
引用
收藏
页码:1259 / 1276
页数:17
相关论文
共 50 条
  • [31] Mining spatio-temporal data
    Andrienko, Gennady
    Malerba, Donato
    May, Michael
    Teisseire, Maguelonne
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2006, 27 (03) : 187 - 190
  • [32] A spatio-temporal differentiation light sensor
    Wang, CY
    Ni, Y
    Devos, F
    SENSORS AND ACTUATORS A-PHYSICAL, 1997, 62 (1-3) : 492 - 495
  • [33] Processing and Geo-visualization of Spatio-Temporal Sensor Data from Connected Automotive Electronics Systems
    Voland, Patrick
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2016, PT III, 2016, 9788 : 290 - 305
  • [34] Massive Spatio-Temporal Mobility Data: An Empirical Experience on Data Management Techniques
    Di Martino, Sergio
    Vitale, Vincenzo Norman
    WEB AND WIRELESS GEOGRAPHICAL INFORMATION SYSTEMS (W2GIS 2020), 2020, 12473 : 41 - 54
  • [35] On spatio-temporal blockchain query processing
    Qu, Qiang
    Nurgaliev, Ildar
    Muzammal, Muhammad
    Jensen, Christian S.
    Fan, Jianping
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 98 : 208 - 218
  • [36] STORM: Spatio-Temporal Online Reasoning and Management of Large Spatio-Temporal Data
    Christensen, Robert
    Wang, Lu
    Li, Feifei
    Yi, Ke
    Tang, Jun
    Villa, Natalee
    SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 1111 - 1116
  • [37] Spatio-Temporal Analysis of Greenhouse Gas Data Via Clustering Techniques
    Cuzzocrea, Alfredo
    Gaber, Mohamed Medhat
    Lattimer, Staci
    PROCEEDINGS OF THE 2015 IEEE 19TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2015, : 478 - 483
  • [38] Spatio-temporal techniques for user identification by means of GPS mobility data
    Luca Rossi
    James Walker
    Mirco Musolesi
    EPJ Data Science, 4
  • [39] Spatio-temporal Range Searching over Compressed Kinetic Sensor Data
    Friedler, Sorelle A.
    Mount, David M.
    ALGORITHMS-ESA 2010, 2010, 6346 : 386 - 397
  • [40] Spatio-temporal techniques for user identification by means of GPS mobility data
    Rossi, Luca
    Walker, James
    Musolesi, Mirco
    EPJ DATA SCIENCE, 2015, 4 (01) : 1 - 16