Cryo-EM structure of the heptameric calcium homeostasis modulator 1 channel

被引:9
|
作者
Ren Y. [1 ]
Li Y. [1 ]
Wang Y. [1 ]
Wen T. [1 ]
Lu X. [1 ]
Chang S. [2 ,3 ,4 ]
Zhang X. [2 ,3 ,4 ]
Shen Y. [1 ,5 ]
Yang X. [1 ]
机构
[1] The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin
[2] Department of Biophysics, Sir Run Run Shaw Hospital, Hangzhou
[3] Department of Pathology, Sir Run Run Shaw Hospital, Hangzhou
[4] Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou
[5] Synergetic Innovation Center of Chemical Science and Engineering, Tianjin
基金
中国国家自然科学基金;
关键词
Ca 2+ - Calcium homeostasis - Conducting state - Danio rerio - Gating mechanisms - Heptamers - Neuronal signalling - Octamers - Pore diameters - Sterics;
D O I
10.1016/j.jbc.2022.101838
中图分类号
学科分类号
摘要
Calcium homeostasis modulator 1 (CALHM1) is a voltage- and Ca2+-gated ATP channel that plays an important role in neuronal signaling. However, as the previously reported CALHM structures are all in the ATP-conducting state, the gating mechanism of ATP permeation is still elusive. Here, we report cryo-EM reconstructions of two Danio rerio CALHM1 heptamers with ordered or flexible long C-terminal helices at resolutions of 3.2 Å and 2.9 Å, respectively, and one D. rerio CALHM1 octamer with flexible long C-terminal helices at a resolution of 3.5 Å. Structural analysis shows that the heptameric CALHM1s are in an ATP-nonconducting state with a central pore diameter of approximately 6.6 Å. Compared with those inside the octameric CALHM1, the N-helix inside the heptameric CALHM1 is in the “down” position to avoid steric clashing with the adjacent TM1 helix. Molecular dynamics simulations show that as the N-helix moves from the “down” position to the “up” position, the pore size of ATP molecule permeation increases significantly. Our results provide important information for elucidating the mechanism of ATP molecule permeation in the CALHM1 channel. © 2022 THE AUTHORS.
引用
收藏
相关论文
共 50 条
  • [31] Improving cryo-EM structure validation
    Alexis Rohou
    Nature Methods, 2021, 18 : 130 - 131
  • [32] Cryo-EM structure of the SEA complex
    Lucas Tafur
    Kerstin Hinterndorfer
    Caroline Gabus
    Chiara Lamanna
    Ariane Bergmann
    Yashar Sadian
    Farzad Hamdi
    Fotis L. Kyrilis
    Panagiotis L. Kastritis
    Robbie Loewith
    Nature, 2022, 611 : 399 - 404
  • [33] Cryo-EM structure of a transcribing cypovirus
    Yang, Chongwen
    Jia, Gang
    Liu, Hongrong
    Zhang, Kai
    Liu, Guangqiao
    Sun, Fei
    Zhu, Ping
    Cheng, Lingpeng
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (16) : 6118 - 6123
  • [34] Cryo-EM Structure of a Possum Enterovirus
    Wang, Ivy
    Gupta, Sandeep K.
    Ems, Guillaume
    Jayawardena, Nadishka
    Strauss, Mike
    Bostina, Mihnea
    VIRUSES-BASEL, 2022, 14 (02):
  • [35] THE CRYO-EM STRUCTURE OF ZIKA VIRUS
    Sirohi, Devika
    Chen, Zhenguo
    Sun, Lei
    Klose, Thomas
    Pierson, Theodore C.
    Rossmann, Michael G.
    Kuhn, Richard J.
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2017, 95 (05): : 571 - 571
  • [36] Cryo-EM structure of the SEA complex
    Tafur, Lucas
    Hinterndorfer, Kerstin
    Gabus, Caroline
    Lamanna, Chiara
    Bergmann, Ariane
    Sadian, Yashar
    Hamdi, Farzad
    Kyrilis, Fotis L.
    Kastritis, Panagiotis L.
    Loewith, Robbie
    NATURE, 2022, 611 (7935) : 399 - +
  • [37] Cryo-EM structure of the exocyst complex
    Mei, Kunrong
    Li, Yan
    Wang, Shaoxiao
    Shao, Guangcan
    Wang, Jia
    Ding, Yuehe
    Luo, Guangzuo
    Yue, Peng
    Liu, Jun-Jie
    Wang, Xinquan
    Dong, Meng-Qiu
    Wang, Hong-Wei
    Guo, Wei
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2018, 25 (02) : 139 - +
  • [38] Cryo-EM structure of the exocyst complex
    Kunrong Mei
    Yan Li
    Shaoxiao Wang
    Guangcan Shao
    Jia Wang
    Yuehe Ding
    Guangzuo Luo
    Peng Yue
    Jun-Jie Liu
    Xinquan Wang
    Meng-Qiu Dong
    Hong-Wei Wang
    Wei Guo
    Nature Structural & Molecular Biology, 2018, 25 : 139 - 146
  • [39] Improving cryo-EM structure validation
    Rohou, Alexis
    NATURE METHODS, 2021, 18 (02) : 130 - 131
  • [40] Unveiling the cryo-EM structure of retromer
    Chandra, Mintu
    Kendall, Amy K.
    Jackson, Lauren P.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2020, 48 (05) : 2261 - 2272