First-order and Berezinskii-Kosterlitz-Thouless phase transitions in two-dimensional generalized XY models

被引:0
|
作者
da Silva, P. A. [1 ]
Campos-Lopes, R. J. [2 ]
Pereira, A. R. [1 ]
机构
[1] Univ Fed Vicosa, Dept Fis, Ave Peter Henry Rolfs S-N, BR-36570900 Vicosa, MG, Brazil
[2] Int Sch Adv Studies SISSA, Phys Dept, Condensed Matter Theory, Via Bonomea 265, I-34136 Trieste, Italy
关键词
CONTINUOUS SYMMETRY GROUP; LONG-RANGE ORDER; MONTE-CARLO; REFLECTION POSITIVITY; LATTICE; SIMULATIONS; DESTRUCTION; DYNAMICS; BEHAVIOR; SYSTEMS;
D O I
10.1103/PhysRevB.110.104112
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Besides the Berezinskii-Kosterlitz-Thouless phase transition, the two-dimensional generalized XY model, identified by a generalization parameter q (as proposed by Romano and Zagrebnov), can also support a first-order phase transition, starting from a critical value q(c). However, the value of q(c) at which this transition takes place is unknown. In this paper, we take two approaches to accurately determine the critical parameter q(c). Furthermore, we show that the model is characterized by three distinct regions concerning both first-order and BerezinskiiKosterlitz-Thouless phase transitions. Finally, the underlying mechanism governing such transitions is presented, along with an estimation of the critical temperatures.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Suppression of the Berezinskii-Kosterlitz-Thouless and quantum phase transitions in two-dimensional superconductors by finite-size effects
    Schneider, T.
    Weyeneth, S.
    PHYSICAL REVIEW B, 2014, 90 (06)
  • [22] Berezinskii-Kosterlitz-Thouless phase transition of 2D dilute generalized XY model
    Sun, Yun-Zhou
    Liang, Jian-Chu
    Xu, Si-Liu
    Yi, Lin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (07) : 1391 - 1399
  • [23] Berezinskii-Kosterlitz-Thouless transitions in two-dimensional lattice SO(Nc) gauge theories with two scalar flavors
    Bonati, Claudio
    Franchi, Alessio
    Pelissetto, Andrea
    Vicari, Ettore
    PHYSICAL REVIEW D, 2021, 103 (01)
  • [24] Quantum phase transitions and Berezinskii-Kosterlitz-Thouless temperature in a two-dimensional spin-orbit-coupled Fermi gas
    Devreese, Jeroen P. A.
    Tempere, Jacques
    de Melo, Carlos A. R. Sa
    PHYSICAL REVIEW A, 2015, 92 (04):
  • [25] Incipient Berezinskii-Kosterlitz-Thouless transition in two-dimensional coplanar Josephson junctions
    Massarotti, D.
    Jouault, B.
    Rouco, V.
    Charpentier, S.
    Bauch, T.
    Michon, A.
    De Candia, A.
    Lucignano, P.
    Lombardi, F.
    Tafuri, F.
    Tagliacozzo, A.
    PHYSICAL REVIEW B, 2016, 94 (05)
  • [26] Reply to "Comment on 'Berezinskii-Kosterlitz-Thouless transition in two-dimensional dipolar stripes'"
    Bombin, Raul
    Mazzanti, Ferran
    Boronat, Jordi
    PHYSICAL REVIEW A, 2020, 102 (04)
  • [27] Berezinskii-Kosterlitz-Thouless Phase Transitions with Long-Range Couplings
    Giachetti, Guido
    Defenu, Nicolo
    Ruffo, Stefano
    Trombettoni, Andrea
    PHYSICAL REVIEW LETTERS, 2021, 127 (15)
  • [28] Emergent Berezinskii-Kosterlitz-Thouless Phase in Low-Dimensional Ferroelectrics
    Nahas, Y.
    Prokhorenko, S.
    Kornev, I.
    Bellaiche, L.
    PHYSICAL REVIEW LETTERS, 2017, 119 (11)
  • [29] Resolving the Berezinskii-Kosterlitz-Thouless transition in the two-dimensional XY model with tensor-network-based level spectroscopy
    Ueda, Atsushi
    Oshikawa, Masaki
    PHYSICAL REVIEW B, 2021, 104 (16)
  • [30] Liquid crystal phases of two-dimensional dipolar gases and Berezinskii-Kosterlitz-Thouless melting
    Wu, Zhigang
    Block, Jens K.
    Bruun, Georg M.
    SCIENTIFIC REPORTS, 2016, 6 : 1 - 10