CONVERGENCE TO SELF-SIMILAR PROFILES IN REACTION-DIFFUSION SYSTEMS

被引:0
|
作者
Mielke, Alexander [1 ,2 ]
Schindler, Stefanie [3 ]
机构
[1] Weierstraẞ-Institut für Angewandte Analysis und Stochastik, Berlin,10117, Germany
[2] Institut für Mathematik, Humboldt Universität Zu, Berlin, Germany
[3] Weierstraẞ-Institut für Angewandte Analysis und Stochastik, Berlin,10117, Germany
关键词
Entropy;
D O I
10.1137/23M1564298
中图分类号
学科分类号
摘要
We study a reaction-diffusion system on the real line, where the reactions of the species are given by one reversible reaction pair αX1 = βX2 satisfying the mass-action law. Under prescribed (different) positive limits at x → -∞ and x → +∞ we investigate the long-time behavior of solutions. Rescaling space and time according to the parabolic scaling with τ = log(1+t) and y = x/√1+t, we show that solutions converge exponentially for τ → ∞ to a self-similar profile. In the original variables, these profiles correspond to asymptotically self-similar behavior describing the phenomenon of diffusive mixing of the different states at infinity. Our method provides global exponential convergence for all initial states with finite entropy relative to the self-similar profile. For the case α = β geq 1 we can allow for profiles with arbitrary limiting states at pm∞, while for α > β geq 1 we need to assume that the two states at infinity are sufficiently close such that the profile is flat enough. Copyright © by SIAM.
引用
收藏
页码:7108 / 7135
相关论文
共 50 条
  • [31] Convergence to periodic solutions in periodic quasimonotone reaction-diffusion systems
    Wang, Y
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 268 (01) : 25 - 40
  • [32] Self-Similar Modes of Coherent Diffusion
    Firstenberg, O.
    London, P.
    Yankelev, D.
    Pugatch, R.
    Shuker, M.
    Davidson, N.
    PHYSICAL REVIEW LETTERS, 2010, 105 (18)
  • [33] SELF-SIMILAR SOLUTIONS FOR DIFFUSION IN SEMICONDUCTORS
    PELETIER, LA
    TROY, WC
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 : 473 - 506
  • [34] Strongly and weakly self-similar diffusion
    Ferrari, R
    Manfroi, AJ
    Young, WR
    PHYSICA D-NONLINEAR PHENOMENA, 2001, 154 (1-2) : 111 - 137
  • [35] Convergence to self-similar solutions for a coagulation equation
    Philippe Laurençot
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2005, 56 : 398 - 411
  • [36] Convergence to self-similar solutions for a coagulation equation
    Laurençot, P
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2005, 56 (03): : 398 - 411
  • [37] Convergence rates for a reaction-diffusion system
    Kirane, M
    Tatar, NE
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2001, 20 (02): : 347 - 357
  • [38] Self-replicating spots in reaction-diffusion systems
    Reynolds, WN
    PonceDawson, S
    Pearson, JE
    PHYSICAL REVIEW E, 1997, 56 (01) : 185 - 198
  • [39] Self-similar evolution of the A-particle island-semi-infinite B-particle sea reaction-diffusion system
    Shipilevsky, Boris M.
    PHYSICAL REVIEW E, 2013, 88 (01):
  • [40] The self-similar profiles of generalized KPZ equation
    Qi, YW
    Wang, MX
    PACIFIC JOURNAL OF MATHEMATICS, 2001, 201 (01) : 223 - 240