Microwave-assisted synthesis and luminescent properties of pure and doped ZnS nanoparticles

被引:0
|
作者
机构
[1] Yang, Huaming
[2] Huang, Chenghuan
[3] Su, Xiaohui
[4] Tang, Aidong
来源
Yang, H. (hmyang@mail.csu.edu.cn) | 1600年 / Elsevier Ltd卷 / 402期
基金
中国国家自然科学基金;
关键词
Doping (additives) - Microwaves - Nanostructured materials - Photoluminescence - Synthesis (chemical) - X ray diffraction analysis;
D O I
暂无
中图分类号
学科分类号
摘要
Pure and doped ZnS nanoparticles have been successfully synthesized via microwave irradiation. X-ray diffraction (XRD) analysis shows that the crystal size of the pure ZnS particles is about 6.5 nm. The ultraviolet-visible (UV-vis) absorption spectra of the samples indicate that the irradiation time shows no significant influence on the size of ZnS nanoparticles. It is also found that the luminescent properties of ZnS nanoparticles are greatly affected by either the microwave irradiation time or dopants of various metallic ions (Ag +, Cu2+, Ce3+ and Sn4+). The intensity of photoluminescence (PL) emission reaches its maximum and then decreases with prolonging the microwave irradiation time. The luminescence intensity of ZnS nanoparticles doped with 0.2% cerium, which is stronger than that of other dopants, is about two times that of sample doped with 0.2% Ag + and 1.6 times that of pure ZnS nanoparticles. But when the amount of doped cerium reaches 0.4%, the emission efficiency is lower than that of pure ZnS. All peak emission wavelength is 450 nm, indicating that the luminescent centers of various metallic ions are not formed within the doped ZnS nanoparticles. © 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 2
相关论文
共 50 条
  • [21] Microwave-Assisted Synthesis and Fluorescence Property of Mn-Doped ZnSe Nanoparticles
    Han Dong-mei
    Song Chun-feng
    Li Xiao-yu
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2010, 30 (09) : 2331 - 2334
  • [22] Microwave-assisted synthesis and characterization of undoped and manganese doped zinc sulfide nanoparticles
    Kuzmin, Alexei
    Dile, Milena
    Laganovska, Katrina
    Zolotarjovs, Aleksejs
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 290
  • [23] Multifunctional properties of microwave-assisted bioengineered nickel doped cobalt ferrite nanoparticles
    M. Madhukara Naik
    H. S. Bhojya Naik
    Nagaraju Kottam
    M. Vinuth
    G. Nagaraju
    M. C. Prabhakara
    Journal of Sol-Gel Science and Technology, 2019, 91 : 578 - 595
  • [24] Multifunctional properties of microwave-assisted bioengineered nickel doped cobalt ferrite nanoparticles
    Naik, M. Madhukara
    Naik, H. S. Bhojya
    Kottam, Nagaraju
    Vinuth, M.
    Nagaraju, G.
    Prabhakara, M. C.
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2019, 91 (03) : 578 - 595
  • [25] Enhanced antibacterial activity of Ag-doped ZnS nanoparticles synthesised by a microwave-assisted polyol method
    Pourmoslemi, Shabnam (sh.moslem@umsha.ac.ir), 1600, Taylor and Francis Ltd. (25):
  • [26] Microwave-Assisted Synthesis of Ag/Cu Bimetallic Nanoparticles And Their Antibacterial Properties
    Li, Pei-Yi
    Song, Shu-Peng
    Zhou, He-Rong
    Zhang, Yuan-Zhuo
    Wan, Tian
    PROCEEDINGS OF THE 2ND ANNUAL INTERNATIONAL CONFERENCE ON ADVANCED MATERIAL ENGINEERING (AME 2016), 2016, 85 : 226 - 230
  • [27] Microwave-assisted synthesis of magnetite nanoparticles possessing superior magnetic properties
    Kostyukhin, Egor M.
    Kustov, Leonid M.
    MENDELEEV COMMUNICATIONS, 2018, 28 (05) : 559 - 561
  • [28] Microwave-assisted polyol synthesis of Cu nanoparticles
    Blosi, M.
    Albonetti, S.
    Dondi, M.
    Martelli, C.
    Baldi, G.
    JOURNAL OF NANOPARTICLE RESEARCH, 2011, 13 (01) : 127 - 138
  • [29] Microwave-assisted polyol synthesis of Cu nanoparticles
    M. Blosi
    S. Albonetti
    M. Dondi
    C. Martelli
    G. Baldi
    Journal of Nanoparticle Research, 2011, 13 : 127 - 138
  • [30] Preparation of CdS nanoparticles by microwave-assisted synthesis
    Tamasauskaite-Tamasiunaite, L.
    Grinciene, G.
    Simkunaite-Stanyniene, B.
    Naruskevicius, L.
    Pakstas, V.
    Selskis, A.
    Norkus, E.
    CHEMIJA, 2015, 26 (03): : 193 - 197