A Review of State-of-the-Art Mixed-Precision Neural Network Frameworks

被引:0
|
作者
Rakka M. [1 ]
Fouda M.E. [3 ]
Khargonekar P. [1 ]
Kurdahi F. [1 ]
机构
[1] Cyber-physical Systems, University of California-Irvine, Irvine, CA
[2] Rain Neuromorphics Inc., San Francisco
关键词
Artificial neural networks; Computational Complexity; Deep Neural Networks; Edge Inference; Hardware; Logic gates; Memory management; Mixed-Precision Neural Networks; Optimization; Quantization; Quantization (signal); Training;
D O I
10.1109/TPAMI.2024.3394390
中图分类号
学科分类号
摘要
Mixed-precision Deep Neural Networks (DNNs) provide an efficient solution for hardware deployment, especially under resource constraints, while maintaining model accuracy. Identifying the ideal bit precision for each layer, however, remains a challenge given the vast array of models, datasets, and quantization schemes, leading to an expansive search space. Recent literature has addressed this challenge, resulting in several promising frameworks. This paper offers a comprehensive overview of the standard quantization classifications prevalent in existing studies. A detailed survey of current mixed-precision frameworks is provided, with an in-depth comparative analysis highlighting their respective merits and limitations. The paper concludes with insights into potential avenues for future research in this domain. IEEE
引用
收藏
页码:1 / 20
页数:19
相关论文
共 50 条
  • [21] Mixed-Precision Network Quantization for Infrared Small Target Segmentation
    Li, Boyang
    Wang, Longguang
    Wang, Yingqian
    Wu, Tianhao
    Lin, Zaiping
    Li, Miao
    An, Wei
    Guo, Yulan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 12
  • [22] State-of-the-art review
    Langhoff-Roos, Jens
    ACTA OBSTETRICIA ET GYNECOLOGICA SCANDINAVICA, 2016, 95 (09) : 963 - 964
  • [23] STATE-OF-THE-ART REVIEW
    Filipiak, Krzysztof J.
    KARDIOLOGIA POLSKA, 2013, 71 (05)
  • [24] DeepBurning-MixQ: An Open Source Mixed-Precision Neural Network Accelerator Design Framework for FPGAs
    Luo, Erjing
    Huang, Haitong
    Liu, Cheng
    Li, Guoyu
    Yang, Bing
    Wang, Ying
    Li, Huawei
    Li, Xiaowei
    2023 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, ICCAD, 2023,
  • [25] AutoMPQ: Automatic Mixed-Precision Neural Network Search via Few-Shot Quantization Adapter
    Xu, Ke
    Shao, Xiangyang
    Tian, Ye
    Yang, Shangshang
    Zhang, Xingyi
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, : 1 - 13
  • [26] State-of-the-Art Review on Mixed Reality Applications in the AECO Industry
    Cheng, Jack C. P.
    Chen, Keyu
    Chen, Weiwei
    JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT, 2020, 146 (02)
  • [27] CMQ: Crossbar-Aware Neural Network Mixed-Precision Quantization via Differentiable Architecture Search
    Peng, Jie
    Liu, Haijun
    Zhao, Zhongjin
    Li, Zhiwei
    Liu, Sen
    Li, Qingjiang
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 41 (11) : 4124 - 4133
  • [28] Mixed-precision quantization-aware training for photonic neural networks
    Kirtas, Manos
    Passalis, Nikolaos
    Oikonomou, Athina
    Moralis-Pegios, Miltos
    Giamougiannis, George
    Tsakyridis, Apostolos
    Mourgias-Alexandris, George
    Pleros, Nikolaos
    Tefas, Anastasios
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (29): : 21361 - 21379
  • [29] Mixed-precision quantization-aware training for photonic neural networks
    Manos Kirtas
    Nikolaos Passalis
    Athina Oikonomou
    Miltos Moralis-Pegios
    George Giamougiannis
    Apostolos Tsakyridis
    George Mourgias-Alexandris
    Nikolaos Pleros
    Anastasios Tefas
    Neural Computing and Applications, 2023, 35 : 21361 - 21379
  • [30] A Review of State-of-the-Art on Enabling Additive Manufacturing Processes for Precision Medicine
    Awad, Atheer
    Goyanes, Alvaro
    Basit, Abdul W. W.
    Zidan, Ahmed S. S.
    Xu, Changxue
    Li, Wei
    Narayan, Roger J. J.
    Chen, Roland K. K.
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2023, 145 (01):