Self-supporting trace Pt-decorated ternary metal phosphide as efficient bifunctional electrocatalyst for water splitting

被引:0
|
作者
Feng, Jiejie [1 ,2 ]
Chu, Changshun [1 ,2 ]
Wei, Liling [1 ]
Li, Huayi [3 ]
Shen, Jianquan [1 ]
机构
[1] Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing,100190, China
[2] University of Chinese Academy of Sciences, Beijing,100049, China
[3] Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Engineering Plastics. Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing,100190, China
基金
中国国家自然科学基金;
关键词
Bioremediation - Cobalt - Cobalt alloys - Electrolysis - Iron - Oxygen evolution reaction - Palladium - Palladium alloys - Platinum - Platinum alloys - Platinum compounds - Rate constants - Ternary systems;
D O I
10.1016/j.jallcom.2024.176946
中图分类号
学科分类号
摘要
Compared to monofunctional catalysts, the preparation of bifunctional materials with HER and OER activities holds greater significance for the separation of hydrogen from water electrolysis. In this study, we synthesized a self-supported bifunctional catalyst using ternary transition metal (Ni, Fe, Co) phosphide adorned with trace Pt for water splitting (P-Fe6Co3Ni/Pt/NF). As the main catalytic kernel toward HER, the Pt nanoparticles underwent uniform in situ reduction on the Ni foam, avoiding clustering due to the protective effect of iron and cobalt phosphides. This exposed more active sites, improving HER kinetics. In the OER process, the deposited Fe and Co were confirmed to play a pivotal role and will undergo oxidation to oxyhydroxides during structural reconstruction. In addition to enhancing conductivity, the Mott-Schottky test revealed that Pt can facilitate the formation of more active sites, leading to a lower potential for the OER reaction. Ultimately, P-Fe6Co3Ni/Pt/NF required only an overpotential of 32.8 mV in HER to reach the current density of 10 mA cm−2, demonstrating excellent OER activity with a low overpotential of 259.9 mV at current density of 20 mA cm−2. When employed as cathode and anode in water electrolysis, P-Fe6Co3Ni/Pt/NF necessitated only 1.6 V cell voltage to achieve the current density of 10 mA cm−2. This study provides a reference for designing other highly efficient Pt-based electrocatalyst, thereby promoting the widespread application of water electrolysis in hydrogen production. © 2024 Elsevier B.V.
引用
收藏
相关论文
共 50 条
  • [31] Electrodeposition of cobalt-iron bimetal phosphide on Ni foam as a bifunctional electrocatalyst for efficient overall water splitting
    Duan, Donghong
    Guo, Desheng
    Gao, Jie
    Liu, Shibin
    Wang, Yunfang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 622 : 250 - 260
  • [32] Amorphous nanosphere self-supporting electrode based on filter paper for efficient water splitting
    Zhang, Yue
    Zhang, Zhe
    Zhang, Xuetao
    Gao, Xinglong
    Shang, Zhihui
    Huang, Xuezhen
    Guo, Enyan
    Si, Conghui
    Wei, Mingzhi
    Lu, Qifang
    Han, Xiujun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 972
  • [33] Ru doping induces the construction of a unique core-shell microflower self-supporting electrocatalyst for highly efficient overall water splitting
    Ye, Lei
    Zhang, Yeqing
    Guo, Buwen
    Cao, Duanlin
    Gong, Yaqiong
    DALTON TRANSACTIONS, 2021, 50 (39) : 13951 - 13960
  • [34] Self-Supporting np-AlFeNiO Bifunctional Electrode Material for Electrochemical Water Splitting Prepared by Electrooxidation
    Ma, Zhihui
    Xu, Wence
    Gao, Zhonghui
    Liang, Yanqin
    Jiang, Hui
    Li, Zhaoyang
    Cui, Zhenduo
    Zhang, Huifang
    Zhu, Shengli
    ENERGIES, 2024, 17 (07)
  • [35] Self-supporting and hierarchically porous NixFe-S/NiFe2O4 heterostructure as a bifunctional electrocatalyst for fluctuating overall water splitting
    Yan, Wenjing
    Zhang, Jintao
    Lu, Aijing
    Lu, Songle
    Zhong, Yiwei
    Wang, Mingyong
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2022, 29 (05) : 1120 - 1131
  • [36] An etch-doping strategy: cobalt-iron bimetallic phosphide as a bifunctional electrocatalyst for highly efficient water splitting
    Wang, Yuanyuan
    Wang, Shanshan
    Chen, Xiaogang
    Zhao, Xuan
    Chang, Shulong
    Guo, Fengmei
    Xu, Jie
    Shang, Yuanyuan
    Zhang, Yingjiu
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (19) : 8527 - 8534
  • [37] Tungsten promoted nickel phosphide nanosheets supported on carbon cloth: An efficient and stable bifunctional electrocatalyst for overall water splitting
    Li, Shanshan
    Liu, Yuanjian
    Wu, Yudong
    Du, Xiangheng
    Guan, Jibiao
    Wang, Lina
    Zhang, Ming
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (75) : 37152 - 37161
  • [38] Iron and chromium co-doped cobalt phosphide porous nanosheets as robust bifunctional electrocatalyst for efficient water splitting
    Sun, Shichao
    Wang, Zhihong
    Meng, Suci
    Yu, Rui
    Jiang, Deli
    Chen, Min
    NANOTECHNOLOGY, 2022, 33 (07)
  • [39] Self-supporting hierarchical Co3O4-nanowires@NiO-nanosheets core-shell nanostructure on carbon foam to form efficient bifunctional electrocatalyst for overall water splitting
    Xu, Huan
    Zhang, Dan
    Liu, Minmin
    Ye, Daixin
    Huo, Shengjuan
    Chen, Wei
    Zhang, Jiujun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 654 : 1293 - 1302
  • [40] Ultrathin Porous NiFeV Ternary Layer Hydroxide Nanosheets as a Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting
    Khang Ngoc Dinh
    Zheng, Penglun
    Dai, Zhengfei
    Zhang, Yu
    Dangol, Raksha
    Zheng, Yun
    Li, Bing
    Zong, Yun
    Yan, Qingyu
    SMALL, 2018, 14 (08)