Data-Efficient Augmentation for Training Neural Networks

被引:0
|
作者
Liu, Tian Yu [1 ]
Mirzasoleiman, Baharan [1 ]
机构
[1] Department of Computer Science, University of California, Los Angeles, United States
基金
美国国家科学基金会;
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Augmentation techniques - Data augmentation - Datapoints - Enhance learning - Generalisation - Jacobians - Neural-networks - Overfitting - Singular values - State-of-the-art performance
引用
收藏
相关论文
共 50 条
  • [31] Data Augmentation for Graph Neural Networks
    Zhao, Tong
    Liu, Yozen
    Neves, Leonardo
    Woodford, Oliver
    Jiang, Meng
    Shah, Neil
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 11015 - 11023
  • [32] NeuralMAE: Data-Efficient Neural Architecture Predictor with Masked Autoencoder
    Liang, Qiaochu
    Gong, Lei
    Wang, Chao
    Zhou, Xuehai
    Li, Xi
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII, 2024, 14432 : 142 - 154
  • [33] Medical image segmentation data augmentation method based on channel weight and data-efficient features
    Wu X.
    Tao C.
    Li Z.
    Zhang J.
    Sun Q.
    Han X.
    Chen Y.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2024, 41 (02): : 220 - 227
  • [34] Leveraging Transfer Learning in LSTM Neural Networks for Data-Efficient Burst Detection in Water Distribution Systems
    Glynis, Konstantinos
    Kapelan, Zoran
    Bakker, Martijn
    Taormina, Riccardo
    WATER RESOURCES MANAGEMENT, 2023, 37 (15) : 5953 - 5972
  • [35] Leveraging Transfer Learning in LSTM Neural Networks for Data-Efficient Burst Detection in Water Distribution Systems
    Konstantinos Glynis
    Zoran Kapelan
    Martijn Bakker
    Riccardo Taormina
    Water Resources Management, 2023, 37 : 5953 - 5972
  • [36] Data-efficient Online Classification with Siamese Networks and Active Learning
    Malialis, Kleanthis
    Panayiotou, Christos G.
    Polycarpou, Marios M.
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [37] Masked Generative Adversarial Networks are Data-Efficient Generation Learners
    Huang, Jiaxing
    Cui, Kaiwen
    Guan, Dayan
    Xiao, Aoran
    Zhan, Fangneng
    Lu, Shijian
    Liao, Shengcai
    Xing, Eric
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [38] A Study on the Impact of Data Augmentation for Training Convolutional Neural Networks in the Presence of Noisy Labels
    Pereira, Emeson
    Carneiro, Gustavo
    Cordeiro, Filipe R.
    2022 35TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2022), 2022, : 25 - 30
  • [39] Generalising electrocardiogram detection and delineation: training convolutional neural networks with synthetic data augmentation
    Jimenez-Perez, Guillermo
    Acosta, Juan
    Alcaine, Alejandro
    Camara, Oscar
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2024, 11
  • [40] Patch Diffusion: Faster and More Data-Efficient Training of Diffusion Models
    Wang, Zhendong
    Jiang, Yifan
    Zheng, Huangjie
    Wang, Peihao
    He, Pengcheng
    Wang, Zhangyang
    Chen, Weizhu
    Zhou, Mingyuan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,