MRI Super-Resolution Analysis via MRISR: Deep Learning for Low-Field Imaging

被引:0
|
作者
Li, Yunhe [1 ]
Yang, Mei [1 ]
Bian, Tao [1 ]
Wu, Haitao [2 ]
机构
[1] Zhaoqing Univ, Sch Elect & Elect Engn, Zhaoqing 526060, Peoples R China
[2] Shenzhen CZTEK Co Ltd, Shenzhen 518055, Peoples R China
关键词
magnetic resonance imaging; super-resolution; generative adversarial networks;
D O I
10.3390/info15100655
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel MRI super-resolution analysis model, MRISR. Through the utilization of generative adversarial networks for the estimation of degradation kernels and the injection of noise, we have constructed a comprehensive dataset of high-quality paired high- and low-resolution MRI images. The MRISR model seamlessly integrates VMamba and Transformer technologies, demonstrating superior performance across various no-reference image quality assessment metrics compared with existing methodologies. It effectively reconstructs high-resolution MRI images while meticulously preserving intricate texture details, achieving a fourfold enhancement in resolution. This research endeavor represents a significant advancement in the field of MRI super-resolution analysis, contributing a cost-effective solution for rapid MRI technology that holds immense promise for widespread adoption in clinical diagnostic applications.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Learning Deep Analysis Dictionaries for Image Super-Resolution
    Huang, Jun-Jie
    Dragotti, Pier Luigi
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 6633 - 6648
  • [22] Super-resolution of brain tumor MRI images based on deep learning
    Zhou, Zhiyi
    Ma, Anbang
    Feng, Qiuting
    Wang, Ran
    Cheng, Lilin
    Chen, Xin
    Yang, Xi
    Liao, Keman
    Miao, Yifeng
    Qiu, Yongming
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2022, 23 (11):
  • [23] Utility of deep learning super-resolution in the context of osteoarthritis MRI biomarkers
    Chaudhari, Akshay S.
    Stevens, Kathryn J.
    Wood, Jeff P.
    Chakraborty, Amit K.
    Gibbons, Eric K.
    Fang, Zhongnan
    Desai, Arjun D.
    Lee, Jin Hyung
    Gold, Garry E.
    Hargreaves, Brian A.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 51 (03) : 768 - 779
  • [24] Intentional Deep Overfit Learning (IDOL) : An Application to Deep Learning Based MRI Super-Resolution
    Park, I.
    Chun, J.
    Choi, B.
    Olberg, S.
    Kim, T.
    Cai, B.
    Godley, A.
    Pompos, A.
    Medin, P.
    Kim, J.
    Jiang, S.
    Park, J.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [25] Deep learning for image super-resolution
    Yang, Wenming
    Zhou, Fei
    Zhu, Rui
    Fukui, Kazuhiro
    Wang, Guijin
    Xue, Jing-Hao
    NEUROCOMPUTING, 2020, 398 (398) : 291 - 292
  • [26] IMPROVING IMAGE QUALITY IN LOW-FIELD MRI WITH DEEP LEARNING
    Hernandez, Armando Garcia
    Fau, Pierre
    Rapacchi, Stanislas
    Wojak, Julien
    Mailleux, Hugues
    Benkreira, Mohamed
    Adel, Mouloud
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 260 - 263
  • [27] Deep Light Field Spatial Super-Resolution Using Heterogeneous Imaging
    Chen, Yeyao
    Jiang, Gangyi
    Yu, Mei
    Xu, Haiyong
    Ho, Yo-Sung
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2023, 29 (10) : 4183 - 4197
  • [28] Super-resolution Imaging on microfluidic super-resolution near-field structure
    Wang, P
    Tang, L
    Zhang, DG
    Lu, YH
    Jiao, XJ
    Xie, JP
    Ming, H
    CHINESE PHYSICS LETTERS, 2005, 22 (07) : 1625 - 1627
  • [29] Low-light-level image super-resolution reconstruction via deep learning network
    Wang, Bowen
    Zou, Yan
    Li, Yuhai
    Lu, Wenlin
    Zuo, Chao
    AOPC 2021: OPTICAL SENSING AND IMAGING TECHNOLOGY, 2021, 12065
  • [30] Enhanced plasmonic scattering imaging via deep learning-based super-resolution reconstruction for exosome imaging
    Huo, Zhaochen
    Chen, Bing
    Wang, Zhan
    Li, Yu
    He, Lei
    Hu, Boheng
    Li, Haoliang
    Wang, Pengfei
    Yao, Jianning
    Xu, Feng
    Li, Ya
    Yang, Xiaonan
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2024, 416 (29) : 6773 - 6787