MRI Super-Resolution Analysis via MRISR: Deep Learning for Low-Field Imaging

被引:0
|
作者
Li, Yunhe [1 ]
Yang, Mei [1 ]
Bian, Tao [1 ]
Wu, Haitao [2 ]
机构
[1] Zhaoqing Univ, Sch Elect & Elect Engn, Zhaoqing 526060, Peoples R China
[2] Shenzhen CZTEK Co Ltd, Shenzhen 518055, Peoples R China
关键词
magnetic resonance imaging; super-resolution; generative adversarial networks;
D O I
10.3390/info15100655
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel MRI super-resolution analysis model, MRISR. Through the utilization of generative adversarial networks for the estimation of degradation kernels and the injection of noise, we have constructed a comprehensive dataset of high-quality paired high- and low-resolution MRI images. The MRISR model seamlessly integrates VMamba and Transformer technologies, demonstrating superior performance across various no-reference image quality assessment metrics compared with existing methodologies. It effectively reconstructs high-resolution MRI images while meticulously preserving intricate texture details, achieving a fourfold enhancement in resolution. This research endeavor represents a significant advancement in the field of MRI super-resolution analysis, contributing a cost-effective solution for rapid MRI technology that holds immense promise for widespread adoption in clinical diagnostic applications.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Deep learning-based single image super-resolution for low-field MR brain images
    M. L. de Leeuw den Bouter
    G. Ippolito
    T. P. A. O’Reilly
    R. F. Remis
    M. B. van Gijzen
    A. G. Webb
    Scientific Reports, 12
  • [2] Deep learning-based single image super-resolution for low-field MR brain images
    den Bouter, M. L. de Leeuw
    Ippolito, G.
    O'Reilly, T. P. A.
    Remis, R. F.
    van Gijzen, M. B.
    Webb, A. G.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] Deep learning advances super-resolution imaging
    Strack, Rita
    NATURE METHODS, 2018, 15 (06) : 403 - 403
  • [4] Deep learning advances super-resolution imaging
    Rita Strack
    Nature Methods, 2018, 15 : 403 - 403
  • [5] Deep Learning for Super-Resolution Biomedical Imaging
    Zhang, Hao
    Fei, Peng
    2018 IEEE 8TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER), 2018, : 435 - 439
  • [6] Super-resolution musculoskeletal MRI using deep learning
    Chaudhari, Akshay S.
    Fang, Zhongnan
    Kogan, Feliks
    Wood, Jeff
    Stevens, Kathryn J.
    Gibbons, Eric K.
    Lee, Jin Hyung
    Gold, Garry E.
    Hargreaves, Brian A.
    MAGNETIC RESONANCE IN MEDICINE, 2018, 80 (05) : 2139 - 2154
  • [7] Deep Learning for Subsurface Penetrating Super-Resolution Imaging
    Zhang, Yan
    Xiao, Zelong
    Wu, Li
    Lu, Xuan
    Wang, Yuankai
    2017 10TH UK-EUROPE-CHINA WORKSHOP ON MILLIMETRE WAVES AND TERAHERTZ TECHNOLOGIES (UCMMT), 2017,
  • [8] DEEP LEARNING FOR SUPER-RESOLUTION VASCULAR ULTRASOUND IMAGING
    van Sloun, Ruud J. G.
    Solomon, Oren
    Bruce, Matthew
    Khaing, Zin Z.
    Eldar, Yonina C.
    Mischi, Massimo
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 1055 - 1059
  • [9] Multimedia super-resolution via deep learning: A survey
    Hayat, Khizar
    DIGITAL SIGNAL PROCESSING, 2018, 81 : 198 - 217
  • [10] Deep learning for fast low-field MRI acquisitions
    Reina Ayde
    Tobias Senft
    Najat Salameh
    Mathieu Sarracanie
    Scientific Reports, 12