Composite interfacial modification in TiO2 nanorod array/poly (3-hexylthiophene) hybrid photovoltaic devices

被引:0
|
作者
机构
[1] Xia, Hanming
[2] 1,Zhang, Tianjin
[3] Wang, Duofa
[4] Wang, Jingyang
[5] Liang, Kun
来源
Zhang, T. (tj65zhang@yahoo.com.cn) | 1600年 / Elsevier Ltd卷 / 575期
关键词
Interfacial modification is an important approach to improve the efficiencies of organic/inorganic hybrid solar cells. A novel strategy of composite interfacial modification in TiO2 nanorod array/poly(3-hexylthiophene) (P3HT) hybrid solar cells had been proposed and carried out. The interfacial modification mechanism had been investigated comprehensively by considering various aspects such as light harvesting; carrier separation; charge recombination and energy level alignment. The results show that monolayer modifiers such as N719 or pyridine (PYR) can improve chemical incompatibility; accelerate carrier separation and reduce charge recombination. Composite interfacial modification had been realized by introducing CdSe; in which enhanced light harvesting was observed as well as the pre-existing advantages. The efficiencies of composite interfacial modified hybrid solar cells based on TiO2/CdSe/PYR/P3HT and TiO2/CdSe/N719/P3HT reached to 0.28% and 0.51%; which were 33% and 45% higher than that based on TiO2/PYR/P3HTand TiO2/N719/P3HT; respectively. © 2013 Elsevier B.V. All rights reserved;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
相关论文
共 50 条
  • [21] Synthesis and photocatalytic activity of poly(3-hexylthiophene)/TiO2 composites
    Muktha, B.
    Mahanta, Debajyoti
    Patil, Satish
    Madras, Giridhar
    JOURNAL OF SOLID STATE CHEMISTRY, 2007, 180 (10) : 2986 - 2989
  • [22] Effect of chemical structure of interface modifier of TiO2 on photovoltaic properties of poly(3-hexylthiophene)/TiO2 layered solar cells
    Hsu, Chih-Wei
    Wang, Leeyih
    Su, Wei-Fang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2009, 329 (01) : 182 - 187
  • [23] Poly(3-hexylthiophene):TiO2 nanocomposites for solar cell applications
    Kwong, CY
    Choy, WCH
    Djurisic, AB
    Chui, PC
    Cheng, KW
    Chan, WK
    NANOTECHNOLOGY, 2004, 15 (09) : 1156 - 1161
  • [24] Enhanced performance of poly(3-hexylthiophene)-based electrochromic devices by adding a mesoporous TiO2 layer
    Baray-Calderon, A.
    Camacho-Caceres, J.
    Hernandez-Guzman, F.
    Hu, Hailin
    Nicho, M. E.
    SYNTHETIC METALS, 2023, 293
  • [25] Air Stable, Efficient Hybrid Photovoltaic Devices Based on Poly(3-hexylthiophene) and Silicon Nanostructures
    Zhang, Fute
    Sun, Baoquan
    Song, Tao
    Zhu, Xiulin
    Lee, Shuittong
    CHEMISTRY OF MATERIALS, 2011, 23 (08) : 2084 - 2090
  • [26] Investigations of the polymer alignment, the nonradiative resonant energy transfer, and the photovoltaic response of poly(3-hexylthiophene)/TiO2 hybrid solar cells
    Park, Young Ran
    Lee, You-Jin
    Yu, Chang-Jae
    Kim, Jae-Hoon
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (04)
  • [27] Using upconversion nanoparticles to improve photovoltaic properties of poly(3-hexylthiophene)-TiO2 heterojunction solar cell
    Ma, Xun
    Ni, Xiuyuan
    JOURNAL OF NANOPARTICLE RESEARCH, 2013, 15 (04)
  • [28] Using upconversion nanoparticles to improve photovoltaic properties of poly(3-hexylthiophene)–TiO2 heterojunction solar cell
    Xun Ma
    Xiuyuan Ni
    Journal of Nanoparticle Research, 2013, 15
  • [29] Hybrid bulk heterojunction solar cells from a blend of poly(3-hexylthiophene) and TiO2 nanotubes
    Wang, Z. J.
    Qu, S. C.
    Zeng, X. B.
    Liu, J. P.
    Zhang, C. S.
    Tan, F. R.
    Jin, L.
    Wang, Z. G.
    APPLIED SURFACE SCIENCE, 2008, 255 (05) : 1916 - 1920
  • [30] Improved charge separation and transport efficiency in poly(3-hexylthiophene)-TiO2 nanorod bulk heterojunction solar cells
    Chang, Chia-Hao
    Huang, Tse-Kai
    Lin, Yu-Ting
    Lin, Yun-Yue
    Chen, Chun-Wei
    Chu, Tsung-Hung
    Su, Wei-Fang
    JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (19) : 2201 - 2207