Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithms

被引:32
|
作者
Andres-Toro, B. [1 ]
Giron-Sierra, J.M. [1 ]
Fernandez-Blanco, P. [1 ]
Lopez-Orozco, J.A. [1 ]
Besada-Portas, E. [1 ]
机构
[1] Dept. of Comp. Arch. and Syst. Eng., Complutense Univ., Madrid, Spain
来源
Journal of Zhejiang University: Science | 2004年 / 5卷 / 04期
关键词
Evolutionary algorithms - Genetic algorithms - Intelligent control - Mathematical models - Multivariable control systems - Optimization;
D O I
10.1631/jzus.2004.0378
中图分类号
学科分类号
摘要
This paper describes empirical research on the model, optimization and supervisory control of beer fermentation. Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathematical models that consider realistic industrial conditions were not available, a new mathematical model design involving industrial conditions was developed. Batch fermentations are multiobjective dynamic processes that must be guided along optimal paths to obtain good results. The paper describes a direct way to apply a Pareto set approach with multiobjective evolutionary algorithms (MOEAs). Successful finding of optimal ways to drive these processes were reported. Once obtained, the mathematical fermentation model was used to optimize the fermentation process by using an intelligent control based on certain rules.
引用
收藏
页码:378 / 389
相关论文
共 50 条
  • [1] Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithms
    ANDRS-TORO B.
    GIRN-SIERRA J.M.
    FERNNDEZ-BLANCO P.
    LPEZ-OROZCO J.A.
    BESADA-PORTAS E.
    Journal of Zhejiang University Science, 2004, (04) : 8 - 19
  • [2] Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithms
    B. Andrés-Toro
    J. M. Girón-Sierra
    P. Fernández-Blanco
    J. A. López-Orozco
    E. Besada-Portas
    Journal of Zhejiang University-SCIENCE A, 2004, 5 (4): : 378 - 389
  • [3] Multiobjective evolutionary algorithms for multivariable PI controller design
    Reynoso-Meza, Gilberto
    Sanchis, Javier
    Blasco, Xavier
    Herrero, Juan M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (09) : 7895 - 7907
  • [4] An Overview of Evolutionary Algorithms in Multiobjective Optimization
    Fonseca, Carlos M.
    Fleming, Peter J.
    EVOLUTIONARY COMPUTATION, 1995, 3 (01) : 1 - 16
  • [5] Benchmarking evolutionary multiobjective optimization algorithms
    Mersmann, Olaf
    Trautmann, Heike
    Naujoks, Boris
    Weihs, Claus
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [6] Global multiobjective optimization with evolutionary algorithms: Selection mechanisms and mutation control
    Hanne, T
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2001, 1993 : 197 - 212
  • [7] Robust Multiobjective Optimization via Evolutionary Algorithms
    He, Zhenan
    Yen, Gary G.
    Yi, Zhang
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (02) : 316 - 330
  • [8] Global Multiobjective Optimization Using Evolutionary Algorithms
    Thomas Hanne
    Journal of Heuristics, 2000, 6 : 347 - 360
  • [9] Multiobjective Evolutionary Algorithms for Intradomain Routing Optimization
    Rocha, Miguel
    Sa, Tiago
    Sousa, Pedro
    Cortez, Paulo
    Rio, Miguel
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 2272 - 2279
  • [10] Global multiobjective optimization using evolutionary algorithms
    Hanne, T
    JOURNAL OF HEURISTICS, 2000, 6 (03) : 347 - 360