On Almost Bipartite Non-König-Egerváry Graphs

被引:0
|
作者
Levit, Vadim E. [1 ]
Mandrescu, Eugen [2 ]
机构
[1] Department of Mathematics, Ariel University, Israel
[2] Department of Computer Science, Holon Institute of Technology, Israel
来源
SSRN | 2023年
关键词
\textrm{core}$\left( G\right) $ be theintersection of all maximum independent sets;
D O I
暂无
中图分类号
学科分类号
摘要
N\left( v\right) \cap A\neq\emptyset\right\} $). It is known that theinequality $\alpha(G)-\mu(G)\leq d\left( G\right) $ holds for every graph\cite{Levman2011a
引用
收藏
相关论文
共 16 条
  • [11] Surface Embedding of Non-Bipartite k-Extendable Graphs
    Hongliang Lu
    David G.L.Wang
    Annals of Applied Mathematics, 2022, 38 (01) : 1 - 24
  • [12] THE LEAST EIGENVALUE OF THE SIGNLESS LAPLACIAN OF NON-BIPARTITE UNICYCLIC GRAPHS WITH K PENDANT VERTICES
    Liu, Ruifang
    Wan, Haixia
    Yuan, Jinjiang
    Jia, Huicai
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 333 - 344
  • [13] Hamiltonian Cycle Properties in k-Extendable Non-bipartite Graphs with High Connectivity
    Zhiyong Gan
    Dingjun Lou
    Yanping Xu
    Graphs and Combinatorics, 2020, 36 : 1043 - 1058
  • [14] Hamiltonian Cycle Properties in k-Extendable Non-bipartite Graphs with High Connectivity
    Gan, Zhiyong
    Lou, Dingjun
    Xu, Yanping
    GRAPHS AND COMBINATORICS, 2020, 36 (04) : 1043 - 1058
  • [15] Computing unique maximum matchings in O(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(m)$$\end{document} time for König–Egerváry graphs and unicyclic graphs
    Vadim E. Levit
    Eugen Mandrescu
    Journal of Combinatorial Optimization, 2016, 32 (1) : 267 - 277
  • [16] Edge-maximal θ2k+1-free non-bipartite Hamiltonian graphs of odd order
    Jaradat, M. M. M.
    Baniabedalruhman, A.
    Bataineh, M. S.
    Jaradat, A. M. M.
    Al-Rhayyel, A. A.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 282 - 286