Orthonormal wavelet bases using spline harmonic basis functions

被引:0
|
作者
Panda, R. [1 ]
Dash, M. [1 ]
机构
[1] Department of Electronics and Telecommunication Engg., University College of Engineering, Burla-768018, India
来源
Advances in Modelling and Analysis A | 2005年 / 42卷 / 3-4期
关键词
Approximation theory - Computer simulation - Functions - Harmonic analysis - Mathematical models;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a new method for the construction of orthonormal wavelet bases using harmonic spline basis functions. The use of these wavelet packets for multiresolution approximation of a function f(x)∈ L 2(ℜ) has been extensively studied. The spectral properties of the harmonic spline basis functions of compact support are explored. A suitable simulation model for implementing the proposed scheme to extract local details of a 'non-stationary' signal is proposed.
引用
收藏
页码:55 / 75
相关论文
共 50 条
  • [21] Construction of fractional spline wavelet bases
    Unser, M
    Blu, T
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VII, 1999, 3813 : 422 - 431
  • [22] Construction of fractional spline wavelet bases
    Proc SPIE Int Soc Opt Eng, (422-431):
  • [23] Exponential-spline wavelet bases
    Khalidov, I
    Unser, M
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 625 - 628
  • [24] Hilbert transform pairs of orthonormal symmetric wavelet bases using allpass filters
    Zhang, Xi
    Ge, Dong Fang
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 425 - 428
  • [25] A new class of orthonormal symmetric wavelet bases using a complex allpass filter
    Zhang, X
    Kato, A
    Yoshikawa, T
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (11) : 2640 - 2647
  • [26] NECESSARY AND SUFFICIENT CONDITIONS FOR CONSTRUCTING ORTHONORMAL WAVELET BASES
    LAWTON, WM
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (01) : 57 - 61
  • [27] Orthonormal wavelet basis based on the tight frame
    Zhao, Ruizhen
    Song, Guoxiang
    Wang, Weiwei
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2000, 27 (01): : 49 - 51
  • [28] Model matching and filter design using orthonormal basis functions
    Zeng, Jie
    de Callafon, Raymond
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 5347 - +
  • [29] Efficient design of orthonormal wavelet bases for signal representation
    Zhang, JK
    Davidson, TN
    Wong, KM
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (07) : 1983 - 1996
  • [30] A family of orthonormal wavelet bases with dilation factor 4
    Karoui, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 317 (01) : 364 - 379