Orthonormal wavelet bases using spline harmonic basis functions

被引:0
|
作者
Panda, R. [1 ]
Dash, M. [1 ]
机构
[1] Department of Electronics and Telecommunication Engg., University College of Engineering, Burla-768018, India
来源
Advances in Modelling and Analysis A | 2005年 / 42卷 / 3-4期
关键词
Approximation theory - Computer simulation - Functions - Harmonic analysis - Mathematical models;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a new method for the construction of orthonormal wavelet bases using harmonic spline basis functions. The use of these wavelet packets for multiresolution approximation of a function f(x)∈ L 2(ℜ) has been extensively studied. The spectral properties of the harmonic spline basis functions of compact support are explored. A suitable simulation model for implementing the proposed scheme to extract local details of a 'non-stationary' signal is proposed.
引用
收藏
页码:55 / 75
相关论文
共 50 条
  • [1] PERIODIC SPLINE ORTHONORMAL BASES
    KAMADA, M
    TORAICHI, K
    MORI, R
    JOURNAL OF APPROXIMATION THEORY, 1988, 55 (01) : 27 - 34
  • [2] B-spline signal processing using harmonic basis functions
    Panda, R
    Chatterji, BN
    SIGNAL PROCESSING, 1999, 72 (03) : 147 - 166
  • [3] Multichannel frequency representation of a signal using harmonic spline basis functions
    Panda, R
    Sharma, V
    IETE JOURNAL OF RESEARCH, 2003, 49 (06) : 355 - 357
  • [4] Orthonormal quadratic B-spline wavelet bases family on an irregular sampling partition
    Zergaïnoh, A
    Chihab, N
    Duhamel, P
    Astruc, JP
    ISSPA 2005: The 8th International Symposium on Signal Processing and its Applications, Vols 1 and 2, Proceedings, 2005, : 807 - 810
  • [6] Precise Modeling of Reverberant Room Responses Using Wavelet Decomposition and Orthonormal Basis Functions
    Hashemgeloogerdi, Sahar
    Bocko, Mark F.
    JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 2018, 66 (1-2): : 21 - 33
  • [7] ORTHONORMAL BASIS FOR SPLINE SIGNAL SPACES
    KAMADA, M
    TORAICHI, K
    IKEBE, Y
    MORI, R
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1989, 20 (01) : 157 - 170
  • [8] A new family of orthonormal wavelet bases
    L. T. Liu
    H. T. Hsu
    B. X. Gao
    Journal of Geodesy, 1998, 72 : 294 - 303
  • [9] A new family of orthonormal wavelet bases
    Liu, LT
    Hsu, HT
    Gao, BX
    JOURNAL OF GEODESY, 1998, 72 (05) : 294 - 303
  • [10] ESTIMATES FOR SPLINE ORTHONORMAL FUNCTIONS AND FOR THEIR DERIVATIVES
    CIESIELSKI, Z
    DOMSTA, J
    STUDIA MATHEMATICA, 1972, 44 (04) : 315 - +