Support vector machines and kernel methods: The new generation of learning machines

被引:0
|
作者
Cristianini, Nello [1 ]
Schölkopf, Bernhard [1 ]
机构
[1] BIOwulf, Berkeley, CA, United States
关键词
Support vector machines;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Global convergence of decomposition learning methods for support vector machines
    Takahashi, Norikazu
    Nishi, Tetsuo
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (06): : 1362 - 1369
  • [22] A new pairwise kernel for biological network inference with support vector machines
    Jean-Philippe Vert
    Jian Qiu
    William S Noble
    [J]. BMC Bioinformatics, 8
  • [23] A new pairwise kernel for biological network inference with support vector machines
    Vert, Jean-Philippe
    Qiu, Jian
    Noble, William S.
    [J]. BMC BIOINFORMATICS, 2007, 8 (Suppl 10)
  • [24] Sparseness Methods of Support Vector Machines
    Li Junfei
    Zhang Yiqin
    [J]. SIXTH INTERNATIONAL CONFERENCE ON ELECTROMECHANICAL CONTROL TECHNOLOGY AND TRANSPORTATION (ICECTT 2021), 2022, 12081
  • [25] Probabilistic methods for Support Vector Machines
    Sollich, P
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 349 - 355
  • [26] Deep kernel learning in core vector machines
    A. L. Afzal
    S. Asharaf
    [J]. Pattern Analysis and Applications, 2018, 21 : 721 - 729
  • [27] Deep kernel learning in core vector machines
    Afzal, A. L.
    Asharaf, S.
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2018, 21 (03) : 721 - 729
  • [28] A comparative analysis of support vector machines and extreme learning machines
    Liu, Xueyi
    Gao, Chuanhou
    Li, Ping
    [J]. NEURAL NETWORKS, 2012, 33 : 58 - 66
  • [29] Learning curves of support vector machines
    Ikeda, K
    [J]. PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND BRAIN, VOLS 1-3, 2005, : 1708 - 1713
  • [30] Active learning with support vector machines
    Kremer, Jan
    Pedersen, Kim Steenstrup
    Igel, Christian
    [J]. WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2014, 4 (04) : 313 - 326