Dynamic deformation behavior of rock based on fractional order calculus

被引:0
|
作者
Institute of Rock and Soil Mechanics, Xi'an University of Technology, Xi'an [1 ]
710048, China
机构
来源
关键词
D O I
10.11779/CJGE2015S1034
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Damage Creep Model of Viscoelastic Rock Based on the Distributed Order Calculus
    Li, Ming
    Pu, Hai
    Cao, Lili
    Sha, Ziheng
    Yu, Hao
    Zhang, Jiazhi
    Zhang, Lianying
    APPLIED SCIENCES-BASEL, 2023, 13 (07):
  • [22] Transmission lines modeling method based on fractional order calculus theory
    Yan, Limei
    Zhu, Yusong
    Xu, Jianjun
    Ren, Weijian
    Wang, Qiong
    Sun, Zhigang
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2014, 29 (09): : 260 - 268
  • [23] A Novel Approach for Complete Identification of Dynamic Fractional Order Systems Using Stochastic Optimization Algorithms and Fractional Calculus
    Maiti, Deepyaman
    Chakraborty, Mithun
    Konar, Amit
    PROCEEDINGS OF ICECE 2008, VOLS 1 AND 2, 2008, : 867 - 872
  • [24] Study on a fractional-order controllers based on best rational approximation of fractional calculus operators
    Zhao, Huimin
    Deng, Wu
    Yang, Xinhua
    Xue, Yu
    JOURNAL OF VIBROENGINEERING, 2016, 18 (05) : 3412 - 3424
  • [25] Fractional Fourier Transform and Fractional-Order Calculus-Based Image Edge Detection
    Kumar, Sanjay
    Saxena, Rajiv
    Singh, Kulbir
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (04) : 1493 - 1513
  • [26] Fractional Fourier Transform and Fractional-Order Calculus-Based Image Edge Detection
    Sanjay Kumar
    Rajiv Saxena
    Kulbir Singh
    Circuits, Systems, and Signal Processing, 2017, 36 : 1493 - 1513
  • [27] ON THE FRACTIONAL CALCULUS MODEL OF VISCOELASTIC BEHAVIOR
    BAGLEY, RL
    TORVIK, PJ
    JOURNAL OF RHEOLOGY, 1986, 30 (01) : 133 - 155
  • [28] Modeling creep recovery behavior of rock materials based on Caputo variable-order fractional derivative
    Dejian Li
    Xiaolin Liu
    Chunxiao Li
    Tao Ding
    Mechanics of Time-Dependent Materials, 2023, 27 : 307 - 319
  • [29] Modeling creep recovery behavior of rock materials based on Caputo variable-order fractional derivative
    Li, Dejian
    Liu, Xiaolin
    Li, Chunxiao
    Ding, Tao
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2023, 27 (02) : 307 - 319
  • [30] A creep model of rock based on variable order fractional derivative
    Su T.
    Zhou H.
    Zhao J.
    Che J.
    Sun X.
    Wang L.
    Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (07): : 1355 - 1363