Multi-sensor information fusion predictive control algorithm

被引:0
|
作者
Zhao M. [1 ]
Li Y. [1 ,2 ]
Hao G. [2 ]
机构
[1] School of Computer and Information Engineering, Harbin University of Commerce, Harbin, 150001, HeiLongjiang
[2] Electronic Engineering Institute, Heilongjiang University, Harbin, 150080, Heilongjiang
关键词
Centralized fusion; Covariance intersection fusion; Information fusion; Matrices weighted; Predictive control;
D O I
10.14257/ijmue.2016.11.4.06
中图分类号
学科分类号
摘要
The multi-sensor information fusion predictive control algorithm for discrete-time linear time-invariant stochastic control system is presented in this paper. This algorithm combines the fusion steady-state Kalman filter with the predictive control. It avoids the complex Diophantine equation and it can obviously reduce the computational burden. The algorithm can deal with the multi-sensor discrete-time linear time-invariant stochastic controllable system based on the linear minimum variance optimal information fusion criterion. The fusion method includes the centralized fusion, matrices weighted and the covariance intersection fusion. Under the linear minimum variance optimal information fusion criterion, the calculation formula of optimal weighting coefficients have be given in order to realize matrices weighted. To avoid the calculation of cross-covariance matrices, another distributed fusion filter is also presented by using the covariance intersection fusion algorithm, which can reduce the computational burden. And the relationship between the accuracy and the computation complexities among the three fusion algorithm are analyzed. Compared with the single sensor case, the accuracy of the fused filter is greatly improved. A simulation example of the target tracking controllable system with two sensors shows its effectiveness and correctness. © 2016 SERSC.
引用
下载
收藏
页码:49 / 58
页数:9
相关论文
共 50 条
  • [41] Survey on Robot Multi-sensor Information fusion Technology
    Zhao, Xiaochuan
    Luo, Qingsheng
    Han, Baoling
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 5019 - +
  • [42] Research on NFE Model of Multi-Sensor Information Fusion
    Fan, Tiantian
    Zong, Hua
    Yu, Changjun
    Liu, Mei
    Quan, Taifan
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL II, PROCEEDINGS, 2008, : 394 - 398
  • [43] Intelligent fusion algorithm for multi-sensor information in integrated power grid operation system
    Zhen, Maofa
    Muzaffar, H. K. T.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (04) : 4059 - 4069
  • [44] Image Fuzzy Edge Detection Algorithm Based on the Consideration of Multi-sensor Information Fusion
    Cai, Lili
    2019 11TH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA 2019), 2019, : 274 - 278
  • [45] An improved interacting multiple model algorithm based on multi-sensor information fusion theory
    Liu, Meng-Meng, 1600, South China University of Technology (42):
  • [46] An improved evidence fusion algorithm in multi-sensor systems
    Kaiyi Zhao
    Rutai Sun
    Li Li
    Manman Hou
    Gang Yuan
    Ruizhi Sun
    Applied Intelligence, 2021, 51 : 7614 - 7624
  • [47] Information Fusion Based Filtering for Multi-Sensor System
    Wang Zhisheng
    Zhen Ziyang
    Hu Yong
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 427 - 430
  • [48] Multi-sensor optimal information fusion Kalman filter*
    Sun, SL
    Deng, ZL
    AUTOMATICA, 2004, 40 (06) : 1017 - 1023
  • [49] AGV System Based on Multi-sensor Information Fusion
    Yuan, Peijiang
    Chen, Dongdong
    Wang, Tianmiao
    Ma, Fucun
    Ren, Hengfei
    Liu, Yuanwei
    Tan, Huanjian
    2014 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2014), 2014, : 900 - 905
  • [50] An Algorithm for Multi-Sensor Data Fusion Target Tracking
    Liu Guo-cheng
    Wang Yong-ji
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 3311 - 3316