Implementation of controlled unitary gates and its application in a remote-controlled quantum gate

被引:1
|
作者
Kim, Byungjoo [1 ,2 ,3 ]
Hong, Seongjin [4 ]
Kim, Yong-su [1 ,5 ]
Oh, Yunghwan [2 ]
Lim, Hyang-tag [1 ,5 ]
机构
[1] Korea Inst Sci & Technol KIST, Ctr Quantum Technol, Seoul 02792, South Korea
[2] Yonsei Univ, Inst Phys & Appl Phys, Seoul 03722, South Korea
[3] Korea Inst Machinery & Mat KIMM, Dept Laser & Electron Beam Technol, Daejeon 34103, South Korea
[4] Chung Ang Univ, Dept Phys, Seoul 06974, South Korea
[5] Univ Sci & Technol, KIST Sch, Div Quantum Informat, Seoul 02792, South Korea
来源
OPTICS EXPRESS | 2024年 / 32卷 / 23期
基金
新加坡国家研究基金会;
关键词
ENTANGLEMENT; REALIZATION; QUBITS; PAIR;
D O I
10.1364/OE.540199
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recently, remote-controlled quantum information processing has been proposed for its applications in secure quantum processing protocols and distributed quantum networks. For remote-controlled quantum gates, the experimental realization of controlled unitary (CU) gates between any quantum gates is an essential task. Here, we propose and experimentally demonstrate a scheme for implementing CU gates between any pair of unitary gates using the polarization and time-bin degrees of freedom of single photons. Then, we experimentally implement remote-controlled single-qubit unitary gates by controlling either the state preparation or measurement of the control qubit with high process fidelities. We believe the proposed remote-controlled quantum gate model can pave the way for secure and efficient quantum information processing.
引用
收藏
页码:42031 / 42039
页数:9
相关论文
共 50 条
  • [41] REALIZATION OF A REMOTE-CONTROLLED ABSORBER SYSTEM
    TAKEUTCHI, F
    CAMON, J
    YUASA, T
    REVUE DE PHYSIQUE APPLIQUEE, 1968, 3 (03): : 281 - +
  • [42] Remote-Controlled Flying Canopy Umbrella
    Chaari, Mohamed Zied
    Al-Kuwari, Essa Saad
    2022 TRON SYMPOSIUM, TRONSHOW, 2022,
  • [43] Hydrogel nanocomposites as remote-controlled biomaterials
    Satarkar, Nitin S.
    Hilt, J. Zach
    ACTA BIOMATERIALIA, 2008, 4 (01) : 11 - 16
  • [44] Remote-controlled passage under the Neva
    Wallis, Shani
    No-Dig International, 2002, 13 (03): : 10 - 12
  • [45] Remote-controlled experiments with cloud chemistry
    Ryan A. Skilton
    Richard A. Bourne
    Zacharias Amara
    Raphael Horvath
    Jing Jin
    Michael J. Scully
    Emilia Streng
    Samantha L. Y. Tang
    Peter A. Summers
    Jiawei Wang
    Eduardo Pérez
    Nigist Asfaw
    Guilherme L. P. Aydos
    Jairton Dupont
    Gurbuz Comak
    Michael W. George
    Martyn Poliakoff
    Nature Chemistry, 2015, 7 : 1 - 5
  • [46] Remote-controlled attenuator for waveguide systems
    Sokolov, YA
    Yushchenko, BI
    Moiseev, VK
    Tochin, VV
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1999, 42 (5-6): : 30 - 33
  • [47] Quantum gates by coupled asymmetric quantum dots and controlled-NOT-gate operation
    Tanamoto, T
    PHYSICAL REVIEW A, 2000, 61 (02): : 7
  • [48] Quantum gates by coupled asymmetric quantum dots and controlled-NOT-gate operation
    Tanamoto, Tetsufumi
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 61 (02): : 223051 - 223057
  • [49] REMOTE-CONTROLLED EQUIPMENT FOR DECOMMISSIONING.
    Anon
    International Atomic Energy Agency bulletin, 1985, (04): : 35 - 38
  • [50] REMOTE-CONTROLLED MULTICOMPONENT WEIGHING BATCHER
    ANGELI, AI
    MEASUREMENT TECHNIQUES-USSR, 1967, (02): : 150 - &