Embeddability in the 3-sphere is decidable

被引:0
|
作者
20143017978255
机构
来源
(1) Department of Applied Mathematics, Charles University, Prague, Czech Republic; (2) Department of Computer Science, ETH Zurich, Switzerland; (3) School of Computing, DePaul University, Chicago, United States; (4) IST Austria, Klosterneuburg, Austria | 1600年 / Exploring the Limits of Computing (ELC); for Advanced Technology (ERATO); Graduated School of Inf. Science of Tohoku University; Kawarabayashi Big Graph JST Exploratory Res.; Kayamori Foundation of Inf. Science Advancement; Kyoto University卷 / Association for Computing Machinery, 2 Penn Plaza, Suite 701, New York, NY 10121-0701, United States期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
106357
引用
收藏
相关论文
共 50 条
  • [41] ON THE ALMOST NEGATIVELY CURVED 3-SPHERE
    BUSER, P
    GROMOLL, D
    LECTURE NOTES IN MATHEMATICS, 1988, 1339 : 78 - 85
  • [42] A HEEGAARD-DIAGRAM OF THE 3-SPHERE
    OCHIAI, M
    OSAKA JOURNAL OF MATHEMATICS, 1985, 22 (04) : 871 - 873
  • [43] KNOT HOMOTOPY IN SUBSPACES OF THE 3-SPHERE
    Koda, Yuya
    Ozawa, Makoto
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 282 (02) : 389 - 414
  • [44] Index of minimal surfaces in the 3-sphere
    Morozov, E. A.
    Penskoi, A. V.
    RUSSIAN MATHEMATICAL SURVEYS, 2023, 78 (02) : 396 - 398
  • [45] ELEMENTARY IDEALS OF POLYHEDRA IN 3-SPHERE
    KINOSHITA, S
    PACIFIC JOURNAL OF MATHEMATICS, 1972, 42 (01) : 89 - +
  • [46] Charting the 3-sphere - An exposition for undergraduates
    Zulli, L
    AMERICAN MATHEMATICAL MONTHLY, 1996, 103 (03): : 221 - 229
  • [47] NEW SKYRMION SOLUTIONS ON A 3-SPHERE
    JACKSON, AD
    MANTON, NS
    WIRZBA, A
    NUCLEAR PHYSICS A, 1989, 495 (3-4) : 499 - 522
  • [48] Sequences of harmonic maps in the 3-sphere
    Dioos, Bart
    Van der Veken, Joeri
    Vrancken, Luc
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (17-18) : 2001 - 2015
  • [49] Graphs in the 3-Sphere with Maximum Symmetry
    Wang, Chao
    Wang, Shicheng
    Zhang, Yimu
    Zimmermann, Bruno
    DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 59 (02) : 331 - 362
  • [50] A CHARACTERIZATION OF HEEGAARD DIAGRAMS FOR THE 3-SPHERE
    KANETO, T
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1986, 62 (06) : 223 - 226