Improved lateral figure-of-merit of heteroepitaxial α-Ga2O3 power MOSFET using ferroelectric AlScN gate stack

被引:1
|
作者
Oh, Seungyoon [1 ]
Yoon, Sisung [1 ]
Lim, Yoojin [1 ]
Lee, Gyuhyung [1 ]
Yoo, Geonwook [1 ,2 ]
机构
[1] Soongsil Univ, Dept Intelligent Semicond, Seoul 06978, South Korea
[2] Soongsil Univ, Sch Elect Engn, Seoul 06978, South Korea
基金
新加坡国家研究基金会;
关键词
NEGATIVE CAPACITANCE; MEMORY; DIODE; FILMS;
D O I
10.1063/5.0232200
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this Letter, we demonstrate heteroepitaxial alpha-Ga2O3 MOSFETs using an aluminum scandium nitride (AlScN) ferroelectric gate stack. Owing to ferroelectric effects, alpha-Ga2O3 MOSFETs with the AlScN/HfO2 gate stack (FGFET) exhibited enhanced electrical performance compared with a HfO2 gate dielectric (IGFET) for variable gate-drain lengths (10, 15, 20 mu m). A remnant polarization value of the AlScN deposited on a HfO2 layer was measured to be about 30 mu C/cm(2). The subthreshold swing (SS) and field-effect mobility (mu(FE)) of IGFET was extracted at 1814 mV/dec and 13.9 cm(2)/V s, respectively. However, the FGFET exhibits a reduced SS of 552 mV/dec with enhanced mu(FE) of 42.7 cm(2)/V s owing to the negative capacitance of the ferroelectric AlScN. Furthermore, a lateral figure-of-merit of 17.8 MW/cm(2) was achieved for the FGFET, far surpassing the 8.3 MW/cm(2) of the IGFET. The proposed ferroelectric AlScN/HfO2 stack can be a promising gate structure for improving both transfer and breakdown characteristics in heteroepitaxial alpha-Ga2O3 power devices.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Realizing High-Performance β-Ga2O3 MOSFET by Using Variation of Lateral Doping: A TCAD Study
    Zhou, Xuanze
    Liu, Qi
    Xu, Guangwei
    Zhou, Kai
    Xiang, Xueqiang
    He, Qiming
    Hao, Weibing
    Jian, Guangzhong
    Zhao, Xiaolong
    Long, Shibing
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (04) : 1501 - 1506
  • [42] Vertical Ga2O3 Schottky Barrier Diodes With Small-Angle Beveled Field Plates: A Baliga's Figure-of-Merit of 0.6 GW/cm2
    Allen, Noah
    Xiao, Ming
    Yan, Xiaodong
    Sasaki, Kohei
    Tadjer, Marko J.
    Ma, Jiahui
    Zhang, Ruizhe
    Wang, Han
    Zhang, Yuhao
    IEEE ELECTRON DEVICE LETTERS, 2019, 40 (09) : 1399 - 1402
  • [43] Impact of Dual Material Gate Design and Retrograde Channel Doping on β-Ga2O3 MOSFET for High Power and RF Applications
    Priyanshi Goyal
    Harsupreet Kaur
    Silicon, 2023, 15 : 1597 - 1608
  • [44] Investigating Viability of Split-Stepped Gate Field Plate Design on Ga2O3 MOSFET for High Power Applications
    Goyal, Priyanshi
    Kaur, Harsupreet
    JOURNAL OF ELECTRONIC MATERIALS, 2024, 53 (08) : 4544 - 4552
  • [45] Investigation of Thermal Effects in β-Ga2O3 MOSFET using Pulsed IV
    Moser, Neil A.
    Crespo, Antonio
    Tetlak, Stephen E.
    Green, Andrew J.
    Chabak, Kelson D.
    Jessen, Gregg H.
    2016 74TH ANNUAL DEVICE RESEARCH CONFERENCE (DRC), 2016,
  • [46] Impact of Dual Material Gate Design and Retrograde Channel Doping on β-Ga2O3 MOSFET for High Power and RF Applications
    Goyal, Priyanshi
    Kaur, Harsupreet
    SILICON, 2023, 15 (04) : 1597 - 1608
  • [47] Depletion-mode GaAs-based MOSFET with Ga2O3(Gd2O3) as a gate dielectric
    Tsai, P. J.
    Chu, L. K.
    Chen, Y. W.
    Chiu, Y. N.
    Yang, H. P.
    Chang, P.
    Kwo, J.
    Chi, J.
    Hong, M.
    JOURNAL OF CRYSTAL GROWTH, 2007, 301 (SPEC. ISS.) : 1013 - 1016
  • [48] An improved design for e-mode AlGaN/GaN HEMT with gate stack β-Ga2O3/p-GaN structure
    Ge, Mei
    Li, Yi
    Zhu, Youhua
    Chen, Dunjun
    Wang, Zhiliang
    Tan, Shuxin
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (03)
  • [49] Ga2O3(Gd2O3) film as high-k gate dielectric for SiGe MOSFET devices
    Pal, S
    Ray, SK
    Lahiri, S
    Bose, DN
    ELECTRONICS LETTERS, 2000, 36 (24) : 2044 - 2046
  • [50] Wide-Range Threshold Voltage Tunable β-Ga2O3FETs With a Sputtered AlScN Ferroelectric Gate Dielectric
    Oh, Seung Yoon
    Kim, Seokgi
    Lee, Gyuhyung
    Park, Ji-Hyeon
    Jeon, Daewoo
    Kim, Sungkyu
    Yoo, Geonwook
    IEEE ELECTRON DEVICE LETTERS, 2024, 45 (09) : 1558 - 1561