Development of Traffic Light and Road Sign Detection and Recognition Using Deep Learning

被引:0
|
作者
De Guia, Joseph M. [1 ,2 ]
Deveraj, Madhavi [1 ]
机构
[1] Mapua Univ, Sch Informat Technol SOIT, Manila, Philippines
[2] Nanyang Technol Univ, Energy Res Inst ERIN, Singapore, Singapore
关键词
Artificial intelligence; autonomous vehicle; traffic light recognition; road sign detection; YOLO; real-time object detection; PERCEPTION; VISION;
D O I
10.14569/IJACSA.2024.0151095
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Traffic light and road sign violations significantly contribute to traffic accidents, particularly at intersections in high-density urban areas. To address these challenges, this research focuses on enhancing the accuracy, robustness, and reliability of Autonomous Vehicle (AV) perception systems using advanced deep learning techniques. The novelty of this study lies in the comprehensive development and evaluation of real-time traffic light and road sign detection systems, comparing state-ofthe-art models including YOLOv3, YOLOv5, and YOLOv7. The models were rigorously tested in a controlled offline environment using the Nvidia Titan RTX, followed by extensive field testing on an AV test vehicle equipped with sensor suite and Nvidia RTX GPU. The testing was conducted across complex urban driving scenarios at the CETRAN proving test track, JTC Cleantech Park, and NTU Singapore campus. The traffic light detection and recognition (TLR) results demonstrate that YOLOv7 outperforms YOLOv5 and YOLOv3, achieving a mean Average Precision (mAP@0.5) of 93%, even under challenging conditions like poor lighting and occlusions. While the traffic road sign detection (TSD) mAP@0.5 of 96%. This superior performance highlights the potential of YOLOv7 in enhancing AV safety and reliability. The conclusions underscore the effectiveness of YOLOv7 for real-time detection in AV perception systems, offering crucial insights for future research. Potential implications include the development of more robust and accurate AV systems, capable of safely navigating complex urban environments.
引用
收藏
页码:942 / 952
页数:11
相关论文
共 50 条
  • [21] Enhancing traffic sign recognition (TSR) by classifying deep learning models to promote road safety
    Prakash, Anju J.
    Sruthy, S.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (05) : 4713 - 4729
  • [22] Deep Learning Approach for US Traffic Sign Recognition
    Nuakoh, Emmanuel B.
    Roy, Kaushik
    Yuan, Xiaohong
    Esterline, Albert
    ICDLT 2019: 2019 3RD INTERNATIONAL CONFERENCE ON DEEP LEARNING TECHNOLOGIES, 2019, : 47 - 50
  • [23] DeepSign: Deep Learning based Traffic Sign Recognition
    Li, Dong
    Zhao, Dongbin
    Chen, Yaran
    Zhang, Qichao
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [24] The Research on Traffic Sign Recognition Based on Deep Learning
    Li, Chen
    Yang, Cheng
    2016 16TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES (ISCIT), 2016, : 156 - 161
  • [25] Deep Learning Traffic Sign Recognition in Autonomous Vehicle
    Alhabshee, Sharifah Maryam
    bin Shamsudin, Abu Ubaidah
    2020 18TH IEEE STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT (SCORED), 2020, : 438 - 442
  • [26] Traffic Sign Recognition by Image Preprocessing and Deep Learning
    Khamdamov, U. R.
    Umarov, M. A.
    Khalilov, S. P.
    Kayumov, A. A.
    Abidova, F. Sh.
    INTELLIGENT HUMAN COMPUTER INTERACTION, IHCI 2023, PT II, 2024, 14532 : 81 - 92
  • [27] Development of Sign Language Recognition Application Using Deep Learning
    Rajalakshmi, N. R.
    NEXT GENERATION OF INTERNET OF THINGS, 2023, 445 : 299 - 308
  • [28] Traffic Sign Recognition Using Deep Convolutional Networks and Extreme Learning Machine
    Zeng, Yujun
    Xu, Xin
    Fang, Yuqiang
    Zhao, Kun
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: IMAGE AND VIDEO DATA ENGINEERING, ISCIDE 2015, PT I, 2015, 9242 : 272 - 280
  • [29] Traffic Road Sign Detection and Recognition in Natural Environment Using RGB Color Model
    Huang, Han
    Hou, Ling-Ying
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2017, PT I, 2017, 10361 : 345 - 352
  • [30] Robust detection and recognition of japanese traffic sign in the complex scenes based on deep learning
    Hasegawa, Ryo
    Iwamoto, Yutaro
    Chen, Yen-Wei
    2019 IEEE 8th Global Conference on Consumer Electronics, GCCE 2019, 2019, : 575 - 578