The electrochemical CO2 reduction reaction (CO2RR) is one of the most promising reactions that allows the capture and conversion of CO2 into value-added products. Designing and developing low-cost catalysts with excellent catalytic activity, high target product selectivity and long-term stability is the long-time goal in both science and industry. The past five years have witnessed an increasing number of achievements in the use of zeolitic imidazolate frameworks (ZIFs)-based materials in electrochemical CO2RR due to their high specific surface area, porous structures, adjustable catalytic activities, and excellent stability. In this Perspective, we aim to review the synthesis of ZIFs-based materials, mechanisms of product generation, and strategies to improve the performance in electrochemical CO2RR, including increasing surface active sites, synergistic catalysis, and electronic structure control. Furthermore, the review outlines the current research trends and provides an inspiring outlook on future developments in the field.